Lectures on block theory /:
Block theory is a part of the theory of modular representation of finite groups and deals with the algebraic structure of blocks. In this volume Burkhard Külshammer starts with the classical structure theory of finite dimensional algebras, and leads up to Puigs main result on the structure of the so...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1991.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
161. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Block theory is a part of the theory of modular representation of finite groups and deals with the algebraic structure of blocks. In this volume Burkhard Külshammer starts with the classical structure theory of finite dimensional algebras, and leads up to Puigs main result on the structure of the so called nilpotent blocks, which he discusses in the final chapter. All the proofs in the text are given clearly and in full detail, and suggestions for further reading are also included. For researchers and graduate students interested in group theory or representation theory, this book will form an excellent self contained introduction to the theory of blocks. |
Beschreibung: | 1 online resource (viii, 105 pages) |
Bibliographie: | Includes bibliographical references (pages 94-96) and index. |
ISBN: | 9781107361690 1107361699 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836870113 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1991 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d M8D |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCQ | ||
019 | |a 797839784 | ||
020 | |a 9781107361690 |q (electronic bk.) | ||
020 | |a 1107361699 |q (electronic bk.) | ||
020 | |z 0521405653 | ||
020 | |z 9780521405652 | ||
020 | |z 9780511565786 | ||
035 | |a (OCoLC)836870113 |z (OCoLC)797839784 | ||
050 | 4 | |a QA176 |b .K85 1991eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a 31.21 |2 bcl | ||
084 | |a *20C20 |2 msc | ||
084 | |a 16P10 |2 msc | ||
084 | |a 16S34 |2 msc | ||
084 | |a 20-01 |2 msc | ||
084 | |a 20C05 |2 msc | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 260 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Külshammer, Burkhard. | |
245 | 1 | 0 | |a Lectures on block theory / |c Burkhard Külshammer. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1991. | ||
300 | |a 1 online resource (viii, 105 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 161 | |
504 | |a Includes bibliographical references (pages 94-96) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Block theory is a part of the theory of modular representation of finite groups and deals with the algebraic structure of blocks. In this volume Burkhard Külshammer starts with the classical structure theory of finite dimensional algebras, and leads up to Puigs main result on the structure of the so called nilpotent blocks, which he discusses in the final chapter. All the proofs in the text are given clearly and in full detail, and suggestions for further reading are also included. For researchers and graduate students interested in group theory or representation theory, this book will form an excellent self contained introduction to the theory of blocks. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; 1. Foundations; 2. Idempotents; 3. Simple and Semisimple Algebras; 4. Points and Maximal Ideals; 5. Miscellaneous Results on Algebras; 6. Modules; 7. Groups Acting on Algebras; 8. Pointed Groups; 9. Sylow Theorems; 10. Groups in Algebras; 11. Group Algebras; 12. Blocks of Group Algebras; 13. Nilpotent Blocks; 14. The Source Algebra of a Nilpotent Block; 15. Puig's Theorem; Bibliography; Subject Index; List of Symbols | |
650 | 0 | |a Blocks (Group theory) |0 http://id.loc.gov/authorities/subjects/sh91005564 | |
650 | 6 | |a Blocs (Théorie des groupes) | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Blocks (Group theory) |2 fast | |
650 | 7 | |a Block |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4146017-0 | |
650 | 7 | |a Blocksystem |g Mathematik |2 gnd |0 http://d-nb.info/gnd/4146045-5 | |
650 | 7 | |a Groupes finis. |2 ram | |
650 | 7 | |a Groupes nilpotents. |2 ram | |
776 | 0 | 8 | |i Print version: |a Külshammer, Burkhard. |t Lectures on block theory. |d Cambridge ; New York : Cambridge University Press, 1991 |z 0521405653 |w (DLC) 91191750 |w (OCoLC)23860453 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 161. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552403 |3 Volltext |
938 | |a Internet Archive |b INAR |n lecturesonblockt0000kuls | ||
938 | |a ebrary |b EBRY |n ebr10562287 | ||
938 | |a EBSCOhost |b EBSC |n 552403 | ||
938 | |a YBP Library Services |b YANK |n 10407420 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836870113 |
---|---|
_version_ | 1816882228324466688 |
adam_text | |
any_adam_object | |
author | Külshammer, Burkhard |
author_facet | Külshammer, Burkhard |
author_role | |
author_sort | Külshammer, Burkhard |
author_variant | b k bk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA176 |
callnumber-raw | QA176 .K85 1991eb |
callnumber-search | QA176 .K85 1991eb |
callnumber-sort | QA 3176 K85 41991EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 260 |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; 1. Foundations; 2. Idempotents; 3. Simple and Semisimple Algebras; 4. Points and Maximal Ideals; 5. Miscellaneous Results on Algebras; 6. Modules; 7. Groups Acting on Algebras; 8. Pointed Groups; 9. Sylow Theorems; 10. Groups in Algebras; 11. Group Algebras; 12. Blocks of Group Algebras; 13. Nilpotent Blocks; 14. The Source Algebra of a Nilpotent Block; 15. Puig's Theorem; Bibliography; Subject Index; List of Symbols |
ctrlnum | (OCoLC)836870113 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03780cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836870113</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1991 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797839784</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361690</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361699</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521405653</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521405652</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511565786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836870113</subfield><subfield code="z">(OCoLC)797839784</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA176</subfield><subfield code="b">.K85 1991eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*20C20</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16P10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16S34</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20C05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Külshammer, Burkhard.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on block theory /</subfield><subfield code="c">Burkhard Külshammer.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1991.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 105 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">161</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 94-96) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Block theory is a part of the theory of modular representation of finite groups and deals with the algebraic structure of blocks. In this volume Burkhard Külshammer starts with the classical structure theory of finite dimensional algebras, and leads up to Puigs main result on the structure of the so called nilpotent blocks, which he discusses in the final chapter. All the proofs in the text are given clearly and in full detail, and suggestions for further reading are also included. For researchers and graduate students interested in group theory or representation theory, this book will form an excellent self contained introduction to the theory of blocks.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; 1. Foundations; 2. Idempotents; 3. Simple and Semisimple Algebras; 4. Points and Maximal Ideals; 5. Miscellaneous Results on Algebras; 6. Modules; 7. Groups Acting on Algebras; 8. Pointed Groups; 9. Sylow Theorems; 10. Groups in Algebras; 11. Group Algebras; 12. Blocks of Group Algebras; 13. Nilpotent Blocks; 14. The Source Algebra of a Nilpotent Block; 15. Puig's Theorem; Bibliography; Subject Index; List of Symbols</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Blocks (Group theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91005564</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Blocs (Théorie des groupes)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blocks (Group theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Block</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4146017-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Blocksystem</subfield><subfield code="g">Mathematik</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4146045-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes finis.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes nilpotents.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Külshammer, Burkhard.</subfield><subfield code="t">Lectures on block theory.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1991</subfield><subfield code="z">0521405653</subfield><subfield code="w">(DLC) 91191750</subfield><subfield code="w">(OCoLC)23860453</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">161.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552403</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">lecturesonblockt0000kuls</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10562287</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407420</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836870113 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:17Z |
institution | BVB |
isbn | 9781107361690 1107361699 |
language | English |
oclc_num | 836870113 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 105 pages) |
psigel | ZDB-4-EBA |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Külshammer, Burkhard. Lectures on block theory / Burkhard Külshammer. Cambridge ; New York : Cambridge University Press, 1991. 1 online resource (viii, 105 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 161 Includes bibliographical references (pages 94-96) and index. Print version record. Block theory is a part of the theory of modular representation of finite groups and deals with the algebraic structure of blocks. In this volume Burkhard Külshammer starts with the classical structure theory of finite dimensional algebras, and leads up to Puigs main result on the structure of the so called nilpotent blocks, which he discusses in the final chapter. All the proofs in the text are given clearly and in full detail, and suggestions for further reading are also included. For researchers and graduate students interested in group theory or representation theory, this book will form an excellent self contained introduction to the theory of blocks. Cover; Title; Copyright; Contents; Preface; 1. Foundations; 2. Idempotents; 3. Simple and Semisimple Algebras; 4. Points and Maximal Ideals; 5. Miscellaneous Results on Algebras; 6. Modules; 7. Groups Acting on Algebras; 8. Pointed Groups; 9. Sylow Theorems; 10. Groups in Algebras; 11. Group Algebras; 12. Blocks of Group Algebras; 13. Nilpotent Blocks; 14. The Source Algebra of a Nilpotent Block; 15. Puig's Theorem; Bibliography; Subject Index; List of Symbols Blocks (Group theory) http://id.loc.gov/authorities/subjects/sh91005564 Blocs (Théorie des groupes) MATHEMATICS Group Theory. bisacsh Blocks (Group theory) fast Block Mathematik gnd http://d-nb.info/gnd/4146017-0 Blocksystem Mathematik gnd http://d-nb.info/gnd/4146045-5 Groupes finis. ram Groupes nilpotents. ram Print version: Külshammer, Burkhard. Lectures on block theory. Cambridge ; New York : Cambridge University Press, 1991 0521405653 (DLC) 91191750 (OCoLC)23860453 London Mathematical Society lecture note series ; 161. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552403 Volltext |
spellingShingle | Külshammer, Burkhard Lectures on block theory / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; 1. Foundations; 2. Idempotents; 3. Simple and Semisimple Algebras; 4. Points and Maximal Ideals; 5. Miscellaneous Results on Algebras; 6. Modules; 7. Groups Acting on Algebras; 8. Pointed Groups; 9. Sylow Theorems; 10. Groups in Algebras; 11. Group Algebras; 12. Blocks of Group Algebras; 13. Nilpotent Blocks; 14. The Source Algebra of a Nilpotent Block; 15. Puig's Theorem; Bibliography; Subject Index; List of Symbols Blocks (Group theory) http://id.loc.gov/authorities/subjects/sh91005564 Blocs (Théorie des groupes) MATHEMATICS Group Theory. bisacsh Blocks (Group theory) fast Block Mathematik gnd http://d-nb.info/gnd/4146017-0 Blocksystem Mathematik gnd http://d-nb.info/gnd/4146045-5 Groupes finis. ram Groupes nilpotents. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh91005564 http://d-nb.info/gnd/4146017-0 http://d-nb.info/gnd/4146045-5 |
title | Lectures on block theory / |
title_auth | Lectures on block theory / |
title_exact_search | Lectures on block theory / |
title_full | Lectures on block theory / Burkhard Külshammer. |
title_fullStr | Lectures on block theory / Burkhard Külshammer. |
title_full_unstemmed | Lectures on block theory / Burkhard Külshammer. |
title_short | Lectures on block theory / |
title_sort | lectures on block theory |
topic | Blocks (Group theory) http://id.loc.gov/authorities/subjects/sh91005564 Blocs (Théorie des groupes) MATHEMATICS Group Theory. bisacsh Blocks (Group theory) fast Block Mathematik gnd http://d-nb.info/gnd/4146017-0 Blocksystem Mathematik gnd http://d-nb.info/gnd/4146045-5 Groupes finis. ram Groupes nilpotents. ram |
topic_facet | Blocks (Group theory) Blocs (Théorie des groupes) MATHEMATICS Group Theory. Block Mathematik Blocksystem Mathematik Groupes finis. Groupes nilpotents. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552403 |
work_keys_str_mv | AT kulshammerburkhard lecturesonblocktheory |