Hochschild cohomology of von Neumann algebras /:
The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior know...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1995.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
203. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields. |
Beschreibung: | 1 online resource (vii, 196 pages) |
Bibliographie: | Includes bibliographical references (pages 182-191 and index. |
ISBN: | 9781107362147 1107362148 9780511526190 0511526199 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836864277 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1995 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d OCLCQ |d YDXCP |d OCLCQ |d AGLDB |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 708565528 | ||
020 | |a 9781107362147 |q (electronic bk.) | ||
020 | |a 1107362148 |q (electronic bk.) | ||
020 | |a 9780511526190 |q (e-book) | ||
020 | |a 0511526199 |q (e-book) | ||
020 | |z 0521478804 | ||
020 | |z 9780521478809 | ||
035 | |a (OCoLC)836864277 |z (OCoLC)708565528 | ||
050 | 4 | |a QA612.3 |b .S56 1995eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514/.23 |2 22 | |
084 | |a 31.61 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Sinclair, Allan M. | |
245 | 1 | 0 | |a Hochschild cohomology of von Neumann algebras / |c Allan M. Sinclair, Roger R. Smith. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1995. | ||
300 | |a 1 online resource (vii, 196 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 203 | |
504 | |a Includes bibliographical references (pages 182-191 and index. | ||
505 | 0 | |a 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix. | |
520 | |a The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Homology theory. |0 http://id.loc.gov/authorities/subjects/sh85061770 | |
650 | 0 | |a Von Neumann algebras. |0 http://id.loc.gov/authorities/subjects/sh85144389 | |
650 | 6 | |a Homologie. | |
650 | 6 | |a Algèbres de Von Neumann. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Homology theory |2 fast | |
650 | 7 | |a Von Neumann algebras |2 fast | |
650 | 7 | |a VonNeumann-Algebra |2 gnd |0 http://d-nb.info/gnd/4388395-3 | |
650 | 7 | |a Hochschild-Kohomologie |2 gnd |0 http://d-nb.info/gnd/4374357-2 | |
650 | 1 | 7 | |a Homologische algebra. |2 gtt |
650 | 1 | 7 | |a Von Neumann-algebra's. |2 gtt |
650 | 7 | |a Homologie. |2 ram | |
650 | 7 | |a Von Neumann, algèbres de. |2 ram | |
700 | 1 | |a Smith, Roger R. | |
776 | 0 | 8 | |i Print version: |a Sinclair, Allan M. |t Hochschild cohomology of von Neumann algebras. |d Cambridge ; New York : Cambridge University Press, 1995 |z 0521478804 |w (DLC) 94038845 |w (OCoLC)31291284 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 203. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552469 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10444075 | ||
938 | |a EBSCOhost |b EBSC |n 552469 | ||
938 | |a YBP Library Services |b YANK |n 10405639 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836864277 |
---|---|
_version_ | 1816882228275183617 |
adam_text | |
any_adam_object | |
author | Sinclair, Allan M. |
author2 | Smith, Roger R. |
author2_role | |
author2_variant | r r s rr rrs |
author_facet | Sinclair, Allan M. Smith, Roger R. |
author_role | |
author_sort | Sinclair, Allan M. |
author_variant | a m s am ams |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA612 |
callnumber-raw | QA612.3 .S56 1995eb |
callnumber-search | QA612.3 .S56 1995eb |
callnumber-sort | QA 3612.3 S56 41995EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix. |
ctrlnum | (OCoLC)836864277 |
dewey-full | 514/.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514/.23 |
dewey-search | 514/.23 |
dewey-sort | 3514 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03712cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836864277</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1995 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708565528</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362147</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362148</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526190</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511526199</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521478804</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521478809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836864277</subfield><subfield code="z">(OCoLC)708565528</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612.3</subfield><subfield code="b">.S56 1995eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.61</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sinclair, Allan M.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hochschild cohomology of von Neumann algebras /</subfield><subfield code="c">Allan M. Sinclair, Roger R. Smith.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 196 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">203</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 182-191 and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Homology theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85061770</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Von Neumann algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85144389</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Homologie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Von Neumann.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">VonNeumann-Algebra</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4388395-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hochschild-Kohomologie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4374357-2</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Homologische algebra.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Von Neumann-algebra's.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologie.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann, algèbres de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Roger R.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sinclair, Allan M.</subfield><subfield code="t">Hochschild cohomology of von Neumann algebras.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1995</subfield><subfield code="z">0521478804</subfield><subfield code="w">(DLC) 94038845</subfield><subfield code="w">(OCoLC)31291284</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">203.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552469</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10444075</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552469</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405639</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836864277 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:16Z |
institution | BVB |
isbn | 9781107362147 1107362148 9780511526190 0511526199 |
language | English |
oclc_num | 836864277 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 196 pages) |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Sinclair, Allan M. Hochschild cohomology of von Neumann algebras / Allan M. Sinclair, Roger R. Smith. Cambridge ; New York : Cambridge University Press, 1995. 1 online resource (vii, 196 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 203 Includes bibliographical references (pages 182-191 and index. 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix. The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields. Print version record. Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Von Neumann algebras. http://id.loc.gov/authorities/subjects/sh85144389 Homologie. Algèbres de Von Neumann. MATHEMATICS Topology. bisacsh Homology theory fast Von Neumann algebras fast VonNeumann-Algebra gnd http://d-nb.info/gnd/4388395-3 Hochschild-Kohomologie gnd http://d-nb.info/gnd/4374357-2 Homologische algebra. gtt Von Neumann-algebra's. gtt Homologie. ram Von Neumann, algèbres de. ram Smith, Roger R. Print version: Sinclair, Allan M. Hochschild cohomology of von Neumann algebras. Cambridge ; New York : Cambridge University Press, 1995 0521478804 (DLC) 94038845 (OCoLC)31291284 London Mathematical Society lecture note series ; 203. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552469 Volltext |
spellingShingle | Sinclair, Allan M. Hochschild cohomology of von Neumann algebras / London Mathematical Society lecture note series ; 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix. Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Von Neumann algebras. http://id.loc.gov/authorities/subjects/sh85144389 Homologie. Algèbres de Von Neumann. MATHEMATICS Topology. bisacsh Homology theory fast Von Neumann algebras fast VonNeumann-Algebra gnd http://d-nb.info/gnd/4388395-3 Hochschild-Kohomologie gnd http://d-nb.info/gnd/4374357-2 Homologische algebra. gtt Von Neumann-algebra's. gtt Homologie. ram Von Neumann, algèbres de. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85061770 http://id.loc.gov/authorities/subjects/sh85144389 http://d-nb.info/gnd/4388395-3 http://d-nb.info/gnd/4374357-2 |
title | Hochschild cohomology of von Neumann algebras / |
title_auth | Hochschild cohomology of von Neumann algebras / |
title_exact_search | Hochschild cohomology of von Neumann algebras / |
title_full | Hochschild cohomology of von Neumann algebras / Allan M. Sinclair, Roger R. Smith. |
title_fullStr | Hochschild cohomology of von Neumann algebras / Allan M. Sinclair, Roger R. Smith. |
title_full_unstemmed | Hochschild cohomology of von Neumann algebras / Allan M. Sinclair, Roger R. Smith. |
title_short | Hochschild cohomology of von Neumann algebras / |
title_sort | hochschild cohomology of von neumann algebras |
topic | Homology theory. http://id.loc.gov/authorities/subjects/sh85061770 Von Neumann algebras. http://id.loc.gov/authorities/subjects/sh85144389 Homologie. Algèbres de Von Neumann. MATHEMATICS Topology. bisacsh Homology theory fast Von Neumann algebras fast VonNeumann-Algebra gnd http://d-nb.info/gnd/4388395-3 Hochschild-Kohomologie gnd http://d-nb.info/gnd/4374357-2 Homologische algebra. gtt Von Neumann-algebra's. gtt Homologie. ram Von Neumann, algèbres de. ram |
topic_facet | Homology theory. Von Neumann algebras. Homologie. Algèbres de Von Neumann. MATHEMATICS Topology. Homology theory Von Neumann algebras VonNeumann-Algebra Hochschild-Kohomologie Homologische algebra. Von Neumann-algebra's. Von Neumann, algèbres de. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552469 |
work_keys_str_mv | AT sinclairallanm hochschildcohomologyofvonneumannalgebras AT smithrogerr hochschildcohomologyofvonneumannalgebras |