Ergodicity for infinite dimensional systems /:
This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1996.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
229. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier-Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase. |
Beschreibung: | 1 online resource (xi, 339 pages) |
Bibliographie: | Includes bibliographical references (pages 321-337) and index. |
ISBN: | 9781107362499 1107362490 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836864257 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1996 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d COO |d VTS |d REC |d OCLCO |d STF |d M8D |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d SFB |d OCLCQ | ||
019 | |a 726825233 | ||
020 | |a 9781107362499 |q (electronic bk.) | ||
020 | |a 1107362490 |q (electronic bk.) | ||
020 | |z 0521579007 | ||
020 | |z 9780521579001 | ||
035 | |a (OCoLC)836864257 |z (OCoLC)726825233 | ||
050 | 4 | |a QA274.25 |b .D38 1996eb | |
072 | 7 | |a MAT |x 029000 |2 bisacsh | |
082 | 7 | |a 519.2 |2 22 | |
084 | |a 31.70 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 810 |2 rvk | ||
084 | |a MAT 344f |2 stub | ||
084 | |a MAT 606f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Da Prato, Giuseppe. | |
245 | 1 | 0 | |a Ergodicity for infinite dimensional systems / |c G. Da Prato, J. Zabczyk. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1996. | ||
300 | |a 1 online resource (xi, 339 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 229 | |
504 | |a Includes bibliographical references (pages 321-337) and index. | ||
505 | 0 | |a I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions. | |
588 | 0 | |a Print version record. | |
520 | |a This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier-Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase. | ||
650 | 0 | |a Stochastic partial differential equations |x Asymptotic theory. |0 http://id.loc.gov/authorities/subjects/sh96001393 | |
650 | 0 | |a Differentiable dynamical systems. |0 http://id.loc.gov/authorities/subjects/sh85037882 | |
650 | 0 | |a Ergodic theory. |0 http://id.loc.gov/authorities/subjects/sh85044600 | |
650 | 6 | |a Équations aux dérivées partielles stochastiques |x Théorie asymptotique. | |
650 | 6 | |a Dynamique différentiable. | |
650 | 6 | |a Théorie ergodique. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a Differentiable dynamical systems |2 fast | |
650 | 7 | |a Ergodic theory |2 fast | |
650 | 7 | |a Stochastic partial differential equations |x Asymptotic theory |2 fast | |
650 | 7 | |a Asymptotisches Lösungsverhalten |2 gnd |0 http://d-nb.info/gnd/4134367-0 | |
650 | 7 | |a Evolutionsgleichung |2 gnd |0 http://d-nb.info/gnd/4129061-6 | |
650 | 7 | |a Stochastische Differentialgleichung |2 gnd |0 http://d-nb.info/gnd/4057621-8 | |
650 | 7 | |a Unendlichdimensionaler Raum |2 gnd |0 http://d-nb.info/gnd/4207852-0 | |
650 | 7 | |a Feller-Halbgruppe |2 gnd |0 http://d-nb.info/gnd/4285866-5 | |
650 | 7 | |a Stochastisches dynamisches System |2 gnd |0 http://d-nb.info/gnd/4305316-6 | |
650 | 1 | 7 | |a Oneindige dimensie. |2 gtt |
650 | 1 | 7 | |a Ergodiciteit. |2 gtt |
650 | 1 | 7 | |a Stochastische differentiaalvergelijkingen. |2 gtt |
650 | 7 | |a Equations aux dérivées partielles stochastiques. |2 ram | |
650 | 7 | |a Dynamique différentiable. |2 ram | |
650 | 7 | |a Théorie ergodique. |2 ram | |
700 | 1 | |a Zabczyk, Jerzy. | |
776 | 0 | 8 | |i Print version: |a Da Prato, Giuseppe. |t Ergodicity for infinite dimensional systems. |d Cambridge ; New York : Cambridge University Press, 1996 |z 0521579007 |w (DLC) 96001602 |w (OCoLC)34243299 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 229. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552521 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10458792 | ||
938 | |a EBSCOhost |b EBSC |n 552521 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154597 | ||
938 | |a YBP Library Services |b YANK |n 10405668 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836864257 |
---|---|
_version_ | 1816882228315029504 |
adam_text | |
any_adam_object | |
author | Da Prato, Giuseppe |
author2 | Zabczyk, Jerzy |
author2_role | |
author2_variant | j z jz |
author_facet | Da Prato, Giuseppe Zabczyk, Jerzy |
author_role | |
author_sort | Da Prato, Giuseppe |
author_variant | p g d pg pgd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.25 .D38 1996eb |
callnumber-search | QA274.25 .D38 1996eb |
callnumber-sort | QA 3274.25 D38 41996EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 810 |
classification_tum | MAT 344f MAT 606f |
collection | ZDB-4-EBA |
contents | I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions. |
ctrlnum | (OCoLC)836864257 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05288cam a2200805 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836864257</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1996 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">726825233</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362499</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362490</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521579007</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521579001</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836864257</subfield><subfield code="z">(OCoLC)726825233</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA274.25</subfield><subfield code="b">.D38 1996eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.70</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 344f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Da Prato, Giuseppe.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ergodicity for infinite dimensional systems /</subfield><subfield code="c">G. Da Prato, J. Zabczyk.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1996.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 339 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">229</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 321-337) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier-Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Stochastic partial differential equations</subfield><subfield code="x">Asymptotic theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh96001393</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differentiable dynamical systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037882</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ergodic theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85044600</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations aux dérivées partielles stochastiques</subfield><subfield code="x">Théorie asymptotique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Dynamique différentiable.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie ergodique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differentiable dynamical systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastic partial differential equations</subfield><subfield code="x">Asymptotic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Asymptotisches Lösungsverhalten</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4134367-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4129061-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4057621-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Unendlichdimensionaler Raum</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4207852-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Feller-Halbgruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4285866-5</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastisches dynamisches System</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4305316-6</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Oneindige dimensie.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Ergodiciteit.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Stochastische differentiaalvergelijkingen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Equations aux dérivées partielles stochastiques.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamique différentiable.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie ergodique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zabczyk, Jerzy.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Da Prato, Giuseppe.</subfield><subfield code="t">Ergodicity for infinite dimensional systems.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1996</subfield><subfield code="z">0521579007</subfield><subfield code="w">(DLC) 96001602</subfield><subfield code="w">(OCoLC)34243299</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">229.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552521</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10458792</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552521</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154597</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405668</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836864257 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:16Z |
institution | BVB |
isbn | 9781107362499 1107362490 |
language | English |
oclc_num | 836864257 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 339 pages) |
psigel | ZDB-4-EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Da Prato, Giuseppe. Ergodicity for infinite dimensional systems / G. Da Prato, J. Zabczyk. Cambridge ; New York : Cambridge University Press, 1996. 1 online resource (xi, 339 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 229 Includes bibliographical references (pages 321-337) and index. I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions. Print version record. This book is devoted to the asymptotic properties of solutions of stochastic evolution equations in infinite dimensional spaces. It is divided into three parts: Markovian dynamical systems; invariant measures for stochastic evolution equations; invariant measures for specific models. The focus is on models of dynamical processes affected by white noise, which are described by partial differential equations such as the reaction-diffusion equations or Navier-Stokes equations. Besides existence and uniqueness questions, special attention is paid to the asymptotic behaviour of the solutions, to invariant measures and ergodicity. Some of the results found here are presented for the first time. For all whose research interests involve stochastic modelling, dynamical systems, or ergodic theory, this book will be an essential purchase. Stochastic partial differential equations Asymptotic theory. http://id.loc.gov/authorities/subjects/sh96001393 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Ergodic theory. http://id.loc.gov/authorities/subjects/sh85044600 Équations aux dérivées partielles stochastiques Théorie asymptotique. Dynamique différentiable. Théorie ergodique. MATHEMATICS Probability & Statistics General. bisacsh Differentiable dynamical systems fast Ergodic theory fast Stochastic partial differential equations Asymptotic theory fast Asymptotisches Lösungsverhalten gnd http://d-nb.info/gnd/4134367-0 Evolutionsgleichung gnd http://d-nb.info/gnd/4129061-6 Stochastische Differentialgleichung gnd http://d-nb.info/gnd/4057621-8 Unendlichdimensionaler Raum gnd http://d-nb.info/gnd/4207852-0 Feller-Halbgruppe gnd http://d-nb.info/gnd/4285866-5 Stochastisches dynamisches System gnd http://d-nb.info/gnd/4305316-6 Oneindige dimensie. gtt Ergodiciteit. gtt Stochastische differentiaalvergelijkingen. gtt Equations aux dérivées partielles stochastiques. ram Dynamique différentiable. ram Théorie ergodique. ram Zabczyk, Jerzy. Print version: Da Prato, Giuseppe. Ergodicity for infinite dimensional systems. Cambridge ; New York : Cambridge University Press, 1996 0521579007 (DLC) 96001602 (OCoLC)34243299 London Mathematical Society lecture note series ; 229. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552521 Volltext |
spellingShingle | Da Prato, Giuseppe Ergodicity for infinite dimensional systems / London Mathematical Society lecture note series ; I. Markovian Dynamical Systems. 1. General Dynamical Systems. 2. Canonical Markovian Systems. 3. Ergodic and mixing measures. 4. Regular Markovian systems -- II. Invariant measures for stochastic evolution equations. 5. Stochastic Differential Equations. 6. Existence of invariant measures. 7. Uniqueness of invariant measures. 8. Densities of invariant measures -- III. Invariant measures for specific models. 9. Ornstein -- Uhlenbeck processes. 10. Stochastic delay systems. 11. Reaction-Diffusion equations. 12. Spin systems. 13. Systems perturbed through the boundary. 14. Burgers equation. 15. Navier-Stokes equations -- IV. Appendices -- A Smoothing properties of convolutions -- B An estimate on modulus of continuity -- C A result on implicit functions. Stochastic partial differential equations Asymptotic theory. http://id.loc.gov/authorities/subjects/sh96001393 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Ergodic theory. http://id.loc.gov/authorities/subjects/sh85044600 Équations aux dérivées partielles stochastiques Théorie asymptotique. Dynamique différentiable. Théorie ergodique. MATHEMATICS Probability & Statistics General. bisacsh Differentiable dynamical systems fast Ergodic theory fast Stochastic partial differential equations Asymptotic theory fast Asymptotisches Lösungsverhalten gnd http://d-nb.info/gnd/4134367-0 Evolutionsgleichung gnd http://d-nb.info/gnd/4129061-6 Stochastische Differentialgleichung gnd http://d-nb.info/gnd/4057621-8 Unendlichdimensionaler Raum gnd http://d-nb.info/gnd/4207852-0 Feller-Halbgruppe gnd http://d-nb.info/gnd/4285866-5 Stochastisches dynamisches System gnd http://d-nb.info/gnd/4305316-6 Oneindige dimensie. gtt Ergodiciteit. gtt Stochastische differentiaalvergelijkingen. gtt Equations aux dérivées partielles stochastiques. ram Dynamique différentiable. ram Théorie ergodique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh96001393 http://id.loc.gov/authorities/subjects/sh85037882 http://id.loc.gov/authorities/subjects/sh85044600 http://d-nb.info/gnd/4134367-0 http://d-nb.info/gnd/4129061-6 http://d-nb.info/gnd/4057621-8 http://d-nb.info/gnd/4207852-0 http://d-nb.info/gnd/4285866-5 http://d-nb.info/gnd/4305316-6 |
title | Ergodicity for infinite dimensional systems / |
title_auth | Ergodicity for infinite dimensional systems / |
title_exact_search | Ergodicity for infinite dimensional systems / |
title_full | Ergodicity for infinite dimensional systems / G. Da Prato, J. Zabczyk. |
title_fullStr | Ergodicity for infinite dimensional systems / G. Da Prato, J. Zabczyk. |
title_full_unstemmed | Ergodicity for infinite dimensional systems / G. Da Prato, J. Zabczyk. |
title_short | Ergodicity for infinite dimensional systems / |
title_sort | ergodicity for infinite dimensional systems |
topic | Stochastic partial differential equations Asymptotic theory. http://id.loc.gov/authorities/subjects/sh96001393 Differentiable dynamical systems. http://id.loc.gov/authorities/subjects/sh85037882 Ergodic theory. http://id.loc.gov/authorities/subjects/sh85044600 Équations aux dérivées partielles stochastiques Théorie asymptotique. Dynamique différentiable. Théorie ergodique. MATHEMATICS Probability & Statistics General. bisacsh Differentiable dynamical systems fast Ergodic theory fast Stochastic partial differential equations Asymptotic theory fast Asymptotisches Lösungsverhalten gnd http://d-nb.info/gnd/4134367-0 Evolutionsgleichung gnd http://d-nb.info/gnd/4129061-6 Stochastische Differentialgleichung gnd http://d-nb.info/gnd/4057621-8 Unendlichdimensionaler Raum gnd http://d-nb.info/gnd/4207852-0 Feller-Halbgruppe gnd http://d-nb.info/gnd/4285866-5 Stochastisches dynamisches System gnd http://d-nb.info/gnd/4305316-6 Oneindige dimensie. gtt Ergodiciteit. gtt Stochastische differentiaalvergelijkingen. gtt Equations aux dérivées partielles stochastiques. ram Dynamique différentiable. ram Théorie ergodique. ram |
topic_facet | Stochastic partial differential equations Asymptotic theory. Differentiable dynamical systems. Ergodic theory. Équations aux dérivées partielles stochastiques Théorie asymptotique. Dynamique différentiable. Théorie ergodique. MATHEMATICS Probability & Statistics General. Differentiable dynamical systems Ergodic theory Stochastic partial differential equations Asymptotic theory Asymptotisches Lösungsverhalten Evolutionsgleichung Stochastische Differentialgleichung Unendlichdimensionaler Raum Feller-Halbgruppe Stochastisches dynamisches System Oneindige dimensie. Ergodiciteit. Stochastische differentiaalvergelijkingen. Equations aux dérivées partielles stochastiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552521 |
work_keys_str_mv | AT dapratogiuseppe ergodicityforinfinitedimensionalsystems AT zabczykjerzy ergodicityforinfinitedimensionalsystems |