Ordered permutation groups /:
As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [Cambridgeshire] ; New York :
Cambridge University Press,
1981.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
55. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals. |
Beschreibung: | Includes indexes. |
Beschreibung: | 1 online resource (xlix, 266 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 253-266). |
ISBN: | 9781107360976 1107360978 1139883844 9781139883849 1107365880 9781107365889 1107370612 9781107370616 1107370272 9781107370272 1299403697 9781299403697 0511721242 9780511721243 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836864223 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1981 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d OCLCO |d UAB |d OCLCQ |d VTS |d OCLCA |d REC |d OCLCO |d STF |d M8D |d OCLCO |d UKAHL |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ |d OCLCO |d OCLCQ | ||
019 | |a 797839729 |a 907081796 |a 1162403893 |a 1241806909 |a 1242481268 | ||
020 | |a 9781107360976 |q (electronic bk.) | ||
020 | |a 1107360978 |q (electronic bk.) | ||
020 | |a 1139883844 | ||
020 | |a 9781139883849 | ||
020 | |a 1107365880 | ||
020 | |a 9781107365889 | ||
020 | |a 1107370612 | ||
020 | |a 9781107370616 | ||
020 | |a 1107370272 | ||
020 | |a 9781107370272 | ||
020 | |a 1299403697 | ||
020 | |a 9781299403697 | ||
020 | |a 0511721242 | ||
020 | |a 9780511721243 | ||
020 | |z 0521241901 | ||
020 | |z 9780521241908 | ||
020 | |z 9780511721243 | ||
035 | |a (OCoLC)836864223 |z (OCoLC)797839729 |z (OCoLC)907081796 |z (OCoLC)1162403893 |z (OCoLC)1241806909 |z (OCoLC)1242481268 | ||
050 | 4 | |a QA171 |b .G53 1981eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a 31.21 |2 bcl | ||
084 | |a SI 320 |2 rvk | ||
084 | |a SK 260 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Glass, A. M. W. |q (Andrew Martin William), |d 1944- |0 http://id.loc.gov/authorities/names/n81107686 | |
245 | 1 | 0 | |a Ordered permutation groups / |c A.M.W. Glass. |
260 | |a Cambridge [Cambridgeshire] ; |a New York : |b Cambridge University Press, |c 1981. | ||
300 | |a 1 online resource (xlix, 266 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 55 | |
504 | |a Includes bibliographical references (pages 253-266). | ||
500 | |a Includes indexes. | ||
588 | 0 | |a Print version record. | |
520 | |a As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals. | ||
505 | 8 | |a CHAPTER 12 ALGEBRAICALLY CLOSED LATTICE-ORDERED GROUPS; CHAPTER 13 THE WORD PROBLEM FOR LATTICE-ORDERED GROUPS; APPENDIX I; APPENDIX II; SOME UNSOLVED PROBLEMS; TEE ABELIAN GROUPABILITY PROBLEM.; ORDERABILITY PROBLEMS.; MULTIPLE TRANSITIVITY PROBLEMS.; TEE PRIMITIVITY PROBLEM.; PROBLEMS ON_ SIMPLICITY AND ^SIMPLICITY.; EXISTENTIALLY CLOSED Z-PERMUTATION GR; THE LATERAL COMPLETION PROBLEM.; WORD PROBLEM TYPE PROBLEMS.; BIBLIOGRAPHY; ANNOTATIONS; INDEX; INDEX OF SYMBOLS | |
546 | |a English. | ||
650 | 0 | |a Permutation groups. |0 http://id.loc.gov/authorities/subjects/sh85099993 | |
650 | 0 | |a Ordered groups. |0 http://id.loc.gov/authorities/subjects/sh85095368 | |
650 | 6 | |a Groupes de permutations. | |
650 | 6 | |a Groupes ordonnés. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a Ordered groups |2 fast | |
650 | 7 | |a Permutation groups |2 fast | |
650 | 7 | |a Permutationsgruppe |2 gnd | |
650 | 1 | 7 | |a Permutatiegroepen. |2 gtt |
776 | 0 | 8 | |i Print version: |a Glass, A.M.W. (Andrew Martin William), 1944- |t Ordered permutation groups. |d Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981 |z 0521241901 |w (DLC) 81016996 |w (OCoLC)7835222 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 55. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552428 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13430692 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385244 | ||
938 | |a ebrary |b EBRY |n ebr10562280 | ||
938 | |a EBSCOhost |b EBSC |n 552428 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154698 | ||
938 | |a YBP Library Services |b YANK |n 10666551 | ||
938 | |a YBP Library Services |b YANK |n 3583246 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836864223 |
---|---|
_version_ | 1816882228287766528 |
adam_text | |
any_adam_object | |
author | Glass, A. M. W. (Andrew Martin William), 1944- |
author_GND | http://id.loc.gov/authorities/names/n81107686 |
author_facet | Glass, A. M. W. (Andrew Martin William), 1944- |
author_role | |
author_sort | Glass, A. M. W. 1944- |
author_variant | a m w g amw amwg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA171 |
callnumber-raw | QA171 .G53 1981eb |
callnumber-search | QA171 .G53 1981eb |
callnumber-sort | QA 3171 G53 41981EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 260 |
collection | ZDB-4-EBA |
contents | CHAPTER 12 ALGEBRAICALLY CLOSED LATTICE-ORDERED GROUPS; CHAPTER 13 THE WORD PROBLEM FOR LATTICE-ORDERED GROUPS; APPENDIX I; APPENDIX II; SOME UNSOLVED PROBLEMS; TEE ABELIAN GROUPABILITY PROBLEM.; ORDERABILITY PROBLEMS.; MULTIPLE TRANSITIVITY PROBLEMS.; TEE PRIMITIVITY PROBLEM.; PROBLEMS ON_ SIMPLICITY AND ^SIMPLICITY.; EXISTENTIALLY CLOSED Z-PERMUTATION GR; THE LATERAL COMPLETION PROBLEM.; WORD PROBLEM TYPE PROBLEMS.; BIBLIOGRAPHY; ANNOTATIONS; INDEX; INDEX OF SYMBOLS |
ctrlnum | (OCoLC)836864223 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04946cam a2200829 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836864223</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1981 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCA</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">797839729</subfield><subfield code="a">907081796</subfield><subfield code="a">1162403893</subfield><subfield code="a">1241806909</subfield><subfield code="a">1242481268</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360976</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107360978</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139883844</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139883849</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107365880</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107365889</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107370612</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107370616</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107370272</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107370272</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299403697</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299403697</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511721242</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511721243</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521241901</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521241908</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780511721243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836864223</subfield><subfield code="z">(OCoLC)797839729</subfield><subfield code="z">(OCoLC)907081796</subfield><subfield code="z">(OCoLC)1162403893</subfield><subfield code="z">(OCoLC)1241806909</subfield><subfield code="z">(OCoLC)1242481268</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA171</subfield><subfield code="b">.G53 1981eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.21</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glass, A. M. W.</subfield><subfield code="q">(Andrew Martin William),</subfield><subfield code="d">1944-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81107686</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ordered permutation groups /</subfield><subfield code="c">A.M.W. Glass.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [Cambridgeshire] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1981.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xlix, 266 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">55</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 253-266).</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">CHAPTER 12 ALGEBRAICALLY CLOSED LATTICE-ORDERED GROUPS; CHAPTER 13 THE WORD PROBLEM FOR LATTICE-ORDERED GROUPS; APPENDIX I; APPENDIX II; SOME UNSOLVED PROBLEMS; TEE ABELIAN GROUPABILITY PROBLEM.; ORDERABILITY PROBLEMS.; MULTIPLE TRANSITIVITY PROBLEMS.; TEE PRIMITIVITY PROBLEM.; PROBLEMS ON_ SIMPLICITY AND ^SIMPLICITY.; EXISTENTIALLY CLOSED Z-PERMUTATION GR; THE LATERAL COMPLETION PROBLEM.; WORD PROBLEM TYPE PROBLEMS.; BIBLIOGRAPHY; ANNOTATIONS; INDEX; INDEX OF SYMBOLS</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Permutation groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85099993</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ordered groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85095368</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de permutations.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes ordonnés.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ordered groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Permutationsgruppe</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Permutatiegroepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Glass, A.M.W. (Andrew Martin William), 1944-</subfield><subfield code="t">Ordered permutation groups.</subfield><subfield code="d">Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981</subfield><subfield code="z">0521241901</subfield><subfield code="w">(DLC) 81016996</subfield><subfield code="w">(OCoLC)7835222</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">55.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552428</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13430692</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385244</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10562280</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552428</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154698</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10666551</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3583246</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836864223 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:16Z |
institution | BVB |
isbn | 9781107360976 1107360978 1139883844 9781139883849 1107365880 9781107365889 1107370612 9781107370616 1107370272 9781107370272 1299403697 9781299403697 0511721242 9780511721243 |
language | English |
oclc_num | 836864223 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xlix, 266 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1981 |
publishDateSearch | 1981 |
publishDateSort | 1981 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Glass, A. M. W. (Andrew Martin William), 1944- http://id.loc.gov/authorities/names/n81107686 Ordered permutation groups / A.M.W. Glass. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981. 1 online resource (xlix, 266 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 55 Includes bibliographical references (pages 253-266). Includes indexes. Print version record. As a result of the work of the nineteenth-century mathematician Arthur Cayley, algebraists and geometers have extensively studied permutation of sets. In the special case that the underlying set is linearly ordered, there is a natural subgroup to study, namely the set of permutations that preserves that order. In some senses. these are universal for automorphisms of models of theories. The purpose of this book is to make a thorough, comprehensive examination of these groups of permutations. After providing the initial background Professor Glass develops the general structure theory, emphasizing throughout the geometric and intuitive aspects of the subject. He includes many applications to infinite simple groups, ordered permutation groups and lattice-ordered groups. The streamlined approach will enable the beginning graduate student to reach the frontiers of the subject smoothly and quickly. Indeed much of the material included has never been available in book form before, so this account should also be useful as a reference work for professionals. CHAPTER 12 ALGEBRAICALLY CLOSED LATTICE-ORDERED GROUPS; CHAPTER 13 THE WORD PROBLEM FOR LATTICE-ORDERED GROUPS; APPENDIX I; APPENDIX II; SOME UNSOLVED PROBLEMS; TEE ABELIAN GROUPABILITY PROBLEM.; ORDERABILITY PROBLEMS.; MULTIPLE TRANSITIVITY PROBLEMS.; TEE PRIMITIVITY PROBLEM.; PROBLEMS ON_ SIMPLICITY AND ^SIMPLICITY.; EXISTENTIALLY CLOSED Z-PERMUTATION GR; THE LATERAL COMPLETION PROBLEM.; WORD PROBLEM TYPE PROBLEMS.; BIBLIOGRAPHY; ANNOTATIONS; INDEX; INDEX OF SYMBOLS English. Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Ordered groups. http://id.loc.gov/authorities/subjects/sh85095368 Groupes de permutations. Groupes ordonnés. MATHEMATICS Group Theory. bisacsh Ordered groups fast Permutation groups fast Permutationsgruppe gnd Permutatiegroepen. gtt Print version: Glass, A.M.W. (Andrew Martin William), 1944- Ordered permutation groups. Cambridge [Cambridgeshire] ; New York : Cambridge University Press, 1981 0521241901 (DLC) 81016996 (OCoLC)7835222 London Mathematical Society lecture note series ; 55. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552428 Volltext |
spellingShingle | Glass, A. M. W. (Andrew Martin William), 1944- Ordered permutation groups / London Mathematical Society lecture note series ; CHAPTER 12 ALGEBRAICALLY CLOSED LATTICE-ORDERED GROUPS; CHAPTER 13 THE WORD PROBLEM FOR LATTICE-ORDERED GROUPS; APPENDIX I; APPENDIX II; SOME UNSOLVED PROBLEMS; TEE ABELIAN GROUPABILITY PROBLEM.; ORDERABILITY PROBLEMS.; MULTIPLE TRANSITIVITY PROBLEMS.; TEE PRIMITIVITY PROBLEM.; PROBLEMS ON_ SIMPLICITY AND ^SIMPLICITY.; EXISTENTIALLY CLOSED Z-PERMUTATION GR; THE LATERAL COMPLETION PROBLEM.; WORD PROBLEM TYPE PROBLEMS.; BIBLIOGRAPHY; ANNOTATIONS; INDEX; INDEX OF SYMBOLS Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Ordered groups. http://id.loc.gov/authorities/subjects/sh85095368 Groupes de permutations. Groupes ordonnés. MATHEMATICS Group Theory. bisacsh Ordered groups fast Permutation groups fast Permutationsgruppe gnd Permutatiegroepen. gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85099993 http://id.loc.gov/authorities/subjects/sh85095368 |
title | Ordered permutation groups / |
title_auth | Ordered permutation groups / |
title_exact_search | Ordered permutation groups / |
title_full | Ordered permutation groups / A.M.W. Glass. |
title_fullStr | Ordered permutation groups / A.M.W. Glass. |
title_full_unstemmed | Ordered permutation groups / A.M.W. Glass. |
title_short | Ordered permutation groups / |
title_sort | ordered permutation groups |
topic | Permutation groups. http://id.loc.gov/authorities/subjects/sh85099993 Ordered groups. http://id.loc.gov/authorities/subjects/sh85095368 Groupes de permutations. Groupes ordonnés. MATHEMATICS Group Theory. bisacsh Ordered groups fast Permutation groups fast Permutationsgruppe gnd Permutatiegroepen. gtt |
topic_facet | Permutation groups. Ordered groups. Groupes de permutations. Groupes ordonnés. MATHEMATICS Group Theory. Ordered groups Permutation groups Permutationsgruppe Permutatiegroepen. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552428 |
work_keys_str_mv | AT glassamw orderedpermutationgroups |