Arithmetic of diagonal hypersurfaces over finite fields /:
There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures exist in this area that are of great interest to researchers in number theory and algebraic geometry. This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields, w...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1995.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
209. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures exist in this area that are of great interest to researchers in number theory and algebraic geometry. This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. It combines theoretical and numerical work, and includes tables of Picard numbers. Although this book is aimed at experts, the authors have included some background material to help non-specialists gain access to the results. |
Beschreibung: | 1 online resource (xi, 169 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 163-166) and index. |
ISBN: | 9781107362239 1107362237 9780511526060 0511526067 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836864184 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1995 enka ob 001 0 eng d | ||
010 | |z 94023790 | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCO |d OCLCF |d OCLCQ |d YDXCP |d OCLCQ |d AGLDB |d HEBIS |d OCLCO |d OCLCQ |d VTS |d REC |d STF |d M8D |d OCLCO |d OCLCQ |d INARC |d OCLCO |d OCLCL | ||
019 | |a 708565616 |a 1409108790 | ||
020 | |a 9781107362239 |q (electronic bk.) | ||
020 | |a 1107362237 |q (electronic bk.) | ||
020 | |a 9780511526060 |q (e-book) | ||
020 | |a 0511526067 |q (e-book) | ||
020 | |z 0521498341 | ||
020 | |z 9780521498340 | ||
035 | |a (OCoLC)836864184 |z (OCoLC)708565616 |z (OCoLC)1409108790 | ||
050 | 4 | |a QA641 |b .G67 1995eb | |
055 | 1 | 1 | |a QA641 |
072 | 7 | |a MAT |x 012010 |2 bisacsh | |
082 | 7 | |a 516.3/53 |2 22 | |
084 | |a 31.51 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Gouvêa, Fernando Q. |q (Fernando Quadros) |1 https://id.oclc.org/worldcat/entity/E39PBJdGRqhFFCqbVB4rv7FFrq |0 http://id.loc.gov/authorities/names/nr89016505 | |
245 | 1 | 0 | |a Arithmetic of diagonal hypersurfaces over finite fields / |c Fernando Q. Gouvêa, Noriko Yui. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1995. | ||
300 | |a 1 online resource (xi, 169 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 209 | |
504 | |a Includes bibliographical references (pages 163-166) and index. | ||
505 | 0 | |a 1. Twisted Jacobi sums -- 2. Cohomology groups of V = V[actual symbol not reproducible](c) -- 3. Twisted Fermat motives -- 4. The inductive structure and the Hodge and Newton polygons -- 5. Twisting and the Picard number -- 6. "Brauer numbers" of twisted Fermat motives -- 7. Evaluating Q(V, T) at T = q[superscript -r] -- 8. The Lichtenbaum-Milne conjecture -- 9. Remarks, observations and open problems -- B How to compute the stable Picard number when m is prime. | |
520 | |a There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures exist in this area that are of great interest to researchers in number theory and algebraic geometry. This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. It combines theoretical and numerical work, and includes tables of Picard numbers. Although this book is aimed at experts, the authors have included some background material to help non-specialists gain access to the results. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Hypersurfaces. |0 http://id.loc.gov/authorities/subjects/sh85063722 | |
650 | 0 | |a Finite fields (Algebra) |0 http://id.loc.gov/authorities/subjects/sh85048351 | |
650 | 6 | |a Hypersurfaces. | |
650 | 6 | |a Corps finis. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Algebraic. |2 bisacsh | |
650 | 7 | |a Finite fields (Algebra) |2 fast | |
650 | 7 | |a Hypersurfaces |2 fast | |
650 | 7 | |a Galois-Feld |2 gnd |0 http://d-nb.info/gnd/4155896-0 | |
650 | 7 | |a Hyperfläche |2 gnd |0 http://d-nb.info/gnd/4161054-4 | |
650 | 1 | 7 | |a Hypervlakken. |2 gtt |
650 | 7 | |a Hypersurfaces. |2 ram | |
650 | 7 | |a Corps finis. |2 ram | |
700 | 1 | |a Yui, Noriko. | |
758 | |i has work: |a Arithmetic of diagonal hypersurfaces over finite fields (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGTgQXdT4kMffbMQdRjvjK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Gouvêa, Fernando Q. (Fernando Quadros). |t Arithmetic of diagonal hypersurfaces over finite fields. |d Cambridge ; New York : Cambridge University Press, 1995 |z 0521498341 |w (DLC) 94023790 |w (OCoLC)31518624 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 209. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552441 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552441 |3 Volltext | |
938 | |a ebrary |b EBRY |n ebr10444110 | ||
938 | |a EBSCOhost |b EBSC |n 552441 | ||
938 | |a YBP Library Services |b YANK |n 10405647 | ||
938 | |a Internet Archive |b INAR |n arithmeticofdiag0000gouv | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836864184 |
---|---|
_version_ | 1813903606358736896 |
adam_text | |
any_adam_object | |
author | Gouvêa, Fernando Q. (Fernando Quadros) |
author2 | Yui, Noriko |
author2_role | |
author2_variant | n y ny |
author_GND | http://id.loc.gov/authorities/names/nr89016505 |
author_facet | Gouvêa, Fernando Q. (Fernando Quadros) Yui, Noriko |
author_role | |
author_sort | Gouvêa, Fernando Q. |
author_variant | f q g fq fqg |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA641 |
callnumber-raw | QA641 .G67 1995eb |
callnumber-search | QA641 .G67 1995eb |
callnumber-sort | QA 3641 G67 41995EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Twisted Jacobi sums -- 2. Cohomology groups of V = V[actual symbol not reproducible](c) -- 3. Twisted Fermat motives -- 4. The inductive structure and the Hodge and Newton polygons -- 5. Twisting and the Picard number -- 6. "Brauer numbers" of twisted Fermat motives -- 7. Evaluating Q(V, T) at T = q[superscript -r] -- 8. The Lichtenbaum-Milne conjecture -- 9. Remarks, observations and open problems -- B How to compute the stable Picard number when m is prime. |
ctrlnum | (OCoLC)836864184 |
dewey-full | 516.3/53 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/53 |
dewey-search | 516.3/53 |
dewey-sort | 3516.3 253 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04296cam a2200697 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836864184</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1995 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 94023790 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708565616</subfield><subfield code="a">1409108790</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362239</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362237</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526060</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511526067</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521498341</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521498340</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836864184</subfield><subfield code="z">(OCoLC)708565616</subfield><subfield code="z">(OCoLC)1409108790</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA641</subfield><subfield code="b">.G67 1995eb</subfield></datafield><datafield tag="055" ind1="1" ind2="1"><subfield code="a">QA641</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/53</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.51</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gouvêa, Fernando Q.</subfield><subfield code="q">(Fernando Quadros)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJdGRqhFFCqbVB4rv7FFrq</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr89016505</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic of diagonal hypersurfaces over finite fields /</subfield><subfield code="c">Fernando Q. Gouvêa, Noriko Yui.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 169 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">209</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 163-166) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Twisted Jacobi sums -- 2. Cohomology groups of V = V[actual symbol not reproducible](c) -- 3. Twisted Fermat motives -- 4. The inductive structure and the Hodge and Newton polygons -- 5. Twisting and the Picard number -- 6. "Brauer numbers" of twisted Fermat motives -- 7. Evaluating Q(V, T) at T = q[superscript -r] -- 8. The Lichtenbaum-Milne conjecture -- 9. Remarks, observations and open problems -- B How to compute the stable Picard number when m is prime.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures exist in this area that are of great interest to researchers in number theory and algebraic geometry. This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. It combines theoretical and numerical work, and includes tables of Picard numbers. Although this book is aimed at experts, the authors have included some background material to help non-specialists gain access to the results.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hypersurfaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85063722</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finite fields (Algebra)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048351</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Hypersurfaces.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Corps finis.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Algebraic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finite fields (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hypersurfaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Galois-Feld</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4155896-0</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperfläche</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4161054-4</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Hypervlakken.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hypersurfaces.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Corps finis.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yui, Noriko.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Arithmetic of diagonal hypersurfaces over finite fields (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGTgQXdT4kMffbMQdRjvjK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Gouvêa, Fernando Q. (Fernando Quadros).</subfield><subfield code="t">Arithmetic of diagonal hypersurfaces over finite fields.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1995</subfield><subfield code="z">0521498341</subfield><subfield code="w">(DLC) 94023790</subfield><subfield code="w">(OCoLC)31518624</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">209.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552441</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552441</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10444110</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552441</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405647</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">arithmeticofdiag0000gouv</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836864184 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:21:21Z |
institution | BVB |
isbn | 9781107362239 1107362237 9780511526060 0511526067 |
language | English |
oclc_num | 836864184 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xi, 169 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Gouvêa, Fernando Q. (Fernando Quadros) https://id.oclc.org/worldcat/entity/E39PBJdGRqhFFCqbVB4rv7FFrq http://id.loc.gov/authorities/names/nr89016505 Arithmetic of diagonal hypersurfaces over finite fields / Fernando Q. Gouvêa, Noriko Yui. Cambridge ; New York : Cambridge University Press, 1995. 1 online resource (xi, 169 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 209 Includes bibliographical references (pages 163-166) and index. 1. Twisted Jacobi sums -- 2. Cohomology groups of V = V[actual symbol not reproducible](c) -- 3. Twisted Fermat motives -- 4. The inductive structure and the Hodge and Newton polygons -- 5. Twisting and the Picard number -- 6. "Brauer numbers" of twisted Fermat motives -- 7. Evaluating Q(V, T) at T = q[superscript -r] -- 8. The Lichtenbaum-Milne conjecture -- 9. Remarks, observations and open problems -- B How to compute the stable Picard number when m is prime. There is now a large body of theory concerning algebraic varieties over finite fields, and many conjectures exist in this area that are of great interest to researchers in number theory and algebraic geometry. This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields, with special focus on the Tate conjecture and the Lichtenbaum-Milne formula for the central value of the L-function. It combines theoretical and numerical work, and includes tables of Picard numbers. Although this book is aimed at experts, the authors have included some background material to help non-specialists gain access to the results. Print version record. Hypersurfaces. http://id.loc.gov/authorities/subjects/sh85063722 Finite fields (Algebra) http://id.loc.gov/authorities/subjects/sh85048351 Hypersurfaces. Corps finis. MATHEMATICS Geometry Algebraic. bisacsh Finite fields (Algebra) fast Hypersurfaces fast Galois-Feld gnd http://d-nb.info/gnd/4155896-0 Hyperfläche gnd http://d-nb.info/gnd/4161054-4 Hypervlakken. gtt Hypersurfaces. ram Corps finis. ram Yui, Noriko. has work: Arithmetic of diagonal hypersurfaces over finite fields (Text) https://id.oclc.org/worldcat/entity/E39PCGTgQXdT4kMffbMQdRjvjK https://id.oclc.org/worldcat/ontology/hasWork Print version: Gouvêa, Fernando Q. (Fernando Quadros). Arithmetic of diagonal hypersurfaces over finite fields. Cambridge ; New York : Cambridge University Press, 1995 0521498341 (DLC) 94023790 (OCoLC)31518624 London Mathematical Society lecture note series ; 209. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552441 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552441 Volltext |
spellingShingle | Gouvêa, Fernando Q. (Fernando Quadros) Arithmetic of diagonal hypersurfaces over finite fields / London Mathematical Society lecture note series ; 1. Twisted Jacobi sums -- 2. Cohomology groups of V = V[actual symbol not reproducible](c) -- 3. Twisted Fermat motives -- 4. The inductive structure and the Hodge and Newton polygons -- 5. Twisting and the Picard number -- 6. "Brauer numbers" of twisted Fermat motives -- 7. Evaluating Q(V, T) at T = q[superscript -r] -- 8. The Lichtenbaum-Milne conjecture -- 9. Remarks, observations and open problems -- B How to compute the stable Picard number when m is prime. Hypersurfaces. http://id.loc.gov/authorities/subjects/sh85063722 Finite fields (Algebra) http://id.loc.gov/authorities/subjects/sh85048351 Hypersurfaces. Corps finis. MATHEMATICS Geometry Algebraic. bisacsh Finite fields (Algebra) fast Hypersurfaces fast Galois-Feld gnd http://d-nb.info/gnd/4155896-0 Hyperfläche gnd http://d-nb.info/gnd/4161054-4 Hypervlakken. gtt Hypersurfaces. ram Corps finis. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85063722 http://id.loc.gov/authorities/subjects/sh85048351 http://d-nb.info/gnd/4155896-0 http://d-nb.info/gnd/4161054-4 |
title | Arithmetic of diagonal hypersurfaces over finite fields / |
title_auth | Arithmetic of diagonal hypersurfaces over finite fields / |
title_exact_search | Arithmetic of diagonal hypersurfaces over finite fields / |
title_full | Arithmetic of diagonal hypersurfaces over finite fields / Fernando Q. Gouvêa, Noriko Yui. |
title_fullStr | Arithmetic of diagonal hypersurfaces over finite fields / Fernando Q. Gouvêa, Noriko Yui. |
title_full_unstemmed | Arithmetic of diagonal hypersurfaces over finite fields / Fernando Q. Gouvêa, Noriko Yui. |
title_short | Arithmetic of diagonal hypersurfaces over finite fields / |
title_sort | arithmetic of diagonal hypersurfaces over finite fields |
topic | Hypersurfaces. http://id.loc.gov/authorities/subjects/sh85063722 Finite fields (Algebra) http://id.loc.gov/authorities/subjects/sh85048351 Hypersurfaces. Corps finis. MATHEMATICS Geometry Algebraic. bisacsh Finite fields (Algebra) fast Hypersurfaces fast Galois-Feld gnd http://d-nb.info/gnd/4155896-0 Hyperfläche gnd http://d-nb.info/gnd/4161054-4 Hypervlakken. gtt Hypersurfaces. ram Corps finis. ram |
topic_facet | Hypersurfaces. Finite fields (Algebra) Corps finis. MATHEMATICS Geometry Algebraic. Hypersurfaces Galois-Feld Hyperfläche Hypervlakken. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552441 |
work_keys_str_mv | AT gouveafernandoq arithmeticofdiagonalhypersurfacesoverfinitefields AT yuinoriko arithmeticofdiagonalhypersurfacesoverfinitefields |