Lie groups and compact groups /:
The theory of Lie groups is a very active part of mathematics and it is the twofold aim of these notes to provide a self-contained introduction to the subject and to make results about the structure of Lie groups and compact groups available to a wide audience. Particular emphasis is placed upon res...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1977.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
25. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The theory of Lie groups is a very active part of mathematics and it is the twofold aim of these notes to provide a self-contained introduction to the subject and to make results about the structure of Lie groups and compact groups available to a wide audience. Particular emphasis is placed upon results and techniques which explicate the interplay between a Lie group and its Lie algebra, and, in keeping with current trends, a coordinate-free notation is used. Much of the general theory is illustrated by examples and exercises involving specific Lie groups. |
Beschreibung: | 1 online resource (ix, 177 pages) |
Bibliographie: | Includes bibliographical references (pages 169-173) and index. |
ISBN: | 9781107360860 1107360862 9780511600715 0511600712 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836848801 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1977 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d SFB |d OCLCO |d OCLCQ |d INARC |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 704520597 | ||
020 | |a 9781107360860 |q (electronic bk.) | ||
020 | |a 1107360862 |q (electronic bk.) | ||
020 | |a 9780511600715 |q (e-book) | ||
020 | |a 0511600712 |q (e-book) | ||
020 | |z 0521213401 | ||
020 | |z 9780521213400 | ||
035 | |a (OCoLC)836848801 |z (OCoLC)704520597 | ||
050 | 4 | |a QA387 |b .P74 1977eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 22 | |
084 | |a 31.30 |2 bcl | ||
088 | |a 76014034 | ||
049 | |a MAIN | ||
100 | 1 | |a Price, John F. |q (John Frederick), |d 1943- |1 https://id.oclc.org/worldcat/entity/E39PCjBkCHJHJJQXyqhmdpM8hb |0 http://id.loc.gov/authorities/names/n85198455 | |
245 | 1 | 0 | |a Lie groups and compact groups / |c John F. Price. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1977. | ||
300 | |a 1 online resource (ix, 177 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 25 | |
504 | |a Includes bibliographical references (pages 169-173) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a The theory of Lie groups is a very active part of mathematics and it is the twofold aim of these notes to provide a self-contained introduction to the subject and to make results about the structure of Lie groups and compact groups available to a wide audience. Particular emphasis is placed upon results and techniques which explicate the interplay between a Lie group and its Lie algebra, and, in keeping with current trends, a coordinate-free notation is used. Much of the general theory is illustrated by examples and exercises involving specific Lie groups. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; Preface; Chapter 1 Analytic manifolds; 1. 1 Manifolds and differentiability; 1. 2 The tangent bundle; 1. 3 Vector fields; Notes; Exercises; Chapter 2 Lie groups and Lie algebras; 2. 1 Lie groups; 2. 2 The Lie algebra of a Lie group; 2. 3 Homomorphisms of Lie groups; 2. 4 The general linear group; Notes; Exercises; Chapter 3 The Campbell-Baker-Hausdorff formula; 3.1 The CBH formula for Lie algebras; 3. 2 The CBH formula for Lie groups; 3. 3 Closed subgroups; 3. 4 Simply connected Lie groups; Notes; Exercises; Chapter 4 The geometry of Lie groups | |
505 | 8 | |a 4.1 Riemannian manifolds4. 2 Invariant metrics on Lie groups; 4. 3 Geodesies on Lie groups; Notes; Exercises; Chapter 5 Lie subgroups and subalgebras; 5.1 Subgroups and subalgebras; 5. 2 Normal subgroups and ideals; Notes; Exercises; Chapter 6 Characterisations and structure of compact Lie Groups; 6.1 Compact groups and Lie groups; 6. 2 Linear Lie groups; 6. 3 Simple and semisimple Lie algebras; 6. 4 The structure of compact Lie groups; 6. 5 Compact connected groups; Notes; Exercises; Appendix A Abstract harmonic analysis; A. 1 Topological groups; A. 2 Representations; A. 3 Compact groups | |
505 | 8 | |a A. 4 The Haar integralBibliography; Index | |
650 | 0 | |a Lie groups. |0 http://id.loc.gov/authorities/subjects/sh85076786 | |
650 | 0 | |a Compact groups. |0 http://id.loc.gov/authorities/subjects/sh85029280 | |
650 | 6 | |a Groupes de Lie. | |
650 | 6 | |a Groupes compacts. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Compact groups |2 fast | |
650 | 7 | |a Lie groups |2 fast | |
650 | 1 | 7 | |a Lie-groepen. |2 gtt |
650 | 1 | 7 | |a Topologische groepen. |2 gtt |
650 | 7 | |a Lie, Groupes de. |2 ram | |
650 | 7 | |a Groupes compacts. |2 ram | |
776 | 0 | 8 | |i Print version: |a Price, John F. (John Frederick), 1943- |t Lie groups and compact groups. |d Cambridge [Eng.] ; New York : Cambridge University Press, 1977 |z 0521213401 |w (DLC) 76014034 |w (OCoLC)2597532 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 25. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552424 |3 Volltext |
938 | |a Internet Archive |b INAR |n liegroupscompact0000pric | ||
938 | |a ebrary |b EBRY |n ebr10440987 | ||
938 | |a EBSCOhost |b EBSC |n 552424 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25154457 | ||
938 | |a YBP Library Services |b YANK |n 10407341 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836848801 |
---|---|
_version_ | 1816882228142014465 |
adam_text | |
any_adam_object | |
author | Price, John F. (John Frederick), 1943- |
author_GND | http://id.loc.gov/authorities/names/n85198455 |
author_facet | Price, John F. (John Frederick), 1943- |
author_role | |
author_sort | Price, John F. 1943- |
author_variant | j f p jf jfp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 .P74 1977eb |
callnumber-search | QA387 .P74 1977eb |
callnumber-sort | QA 3387 P74 41977EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; Preface; Chapter 1 Analytic manifolds; 1. 1 Manifolds and differentiability; 1. 2 The tangent bundle; 1. 3 Vector fields; Notes; Exercises; Chapter 2 Lie groups and Lie algebras; 2. 1 Lie groups; 2. 2 The Lie algebra of a Lie group; 2. 3 Homomorphisms of Lie groups; 2. 4 The general linear group; Notes; Exercises; Chapter 3 The Campbell-Baker-Hausdorff formula; 3.1 The CBH formula for Lie algebras; 3. 2 The CBH formula for Lie groups; 3. 3 Closed subgroups; 3. 4 Simply connected Lie groups; Notes; Exercises; Chapter 4 The geometry of Lie groups 4.1 Riemannian manifolds4. 2 Invariant metrics on Lie groups; 4. 3 Geodesies on Lie groups; Notes; Exercises; Chapter 5 Lie subgroups and subalgebras; 5.1 Subgroups and subalgebras; 5. 2 Normal subgroups and ideals; Notes; Exercises; Chapter 6 Characterisations and structure of compact Lie Groups; 6.1 Compact groups and Lie groups; 6. 2 Linear Lie groups; 6. 3 Simple and semisimple Lie algebras; 6. 4 The structure of compact Lie groups; 6. 5 Compact connected groups; Notes; Exercises; Appendix A Abstract harmonic analysis; A. 1 Topological groups; A. 2 Representations; A. 3 Compact groups A. 4 The Haar integralBibliography; Index |
ctrlnum | (OCoLC)836848801 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04625cam a2200685 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836848801</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1977 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">704520597</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107360860</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107360862</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511600715</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511600712</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521213401</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521213400</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836848801</subfield><subfield code="z">(OCoLC)704520597</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA387</subfield><subfield code="b">.P74 1977eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.30</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="088" ind1=" " ind2=" "><subfield code="a">76014034</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Price, John F.</subfield><subfield code="q">(John Frederick),</subfield><subfield code="d">1943-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjBkCHJHJJQXyqhmdpM8hb</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85198455</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie groups and compact groups /</subfield><subfield code="c">John F. Price.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1977.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 177 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">25</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 169-173) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of Lie groups is a very active part of mathematics and it is the twofold aim of these notes to provide a self-contained introduction to the subject and to make results about the structure of Lie groups and compact groups available to a wide audience. Particular emphasis is placed upon results and techniques which explicate the interplay between a Lie group and its Lie algebra, and, in keeping with current trends, a coordinate-free notation is used. Much of the general theory is illustrated by examples and exercises involving specific Lie groups.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Chapter 1 Analytic manifolds; 1. 1 Manifolds and differentiability; 1. 2 The tangent bundle; 1. 3 Vector fields; Notes; Exercises; Chapter 2 Lie groups and Lie algebras; 2. 1 Lie groups; 2. 2 The Lie algebra of a Lie group; 2. 3 Homomorphisms of Lie groups; 2. 4 The general linear group; Notes; Exercises; Chapter 3 The Campbell-Baker-Hausdorff formula; 3.1 The CBH formula for Lie algebras; 3. 2 The CBH formula for Lie groups; 3. 3 Closed subgroups; 3. 4 Simply connected Lie groups; Notes; Exercises; Chapter 4 The geometry of Lie groups</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.1 Riemannian manifolds4. 2 Invariant metrics on Lie groups; 4. 3 Geodesies on Lie groups; Notes; Exercises; Chapter 5 Lie subgroups and subalgebras; 5.1 Subgroups and subalgebras; 5. 2 Normal subgroups and ideals; Notes; Exercises; Chapter 6 Characterisations and structure of compact Lie Groups; 6.1 Compact groups and Lie groups; 6. 2 Linear Lie groups; 6. 3 Simple and semisimple Lie algebras; 6. 4 The structure of compact Lie groups; 6. 5 Compact connected groups; Notes; Exercises; Appendix A Abstract harmonic analysis; A. 1 Topological groups; A. 2 Representations; A. 3 Compact groups</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">A. 4 The Haar integralBibliography; Index</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076786</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Compact groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85029280</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes compacts.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Compact groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Lie-groepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Topologische groepen.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, Groupes de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Groupes compacts.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Price, John F. (John Frederick), 1943-</subfield><subfield code="t">Lie groups and compact groups.</subfield><subfield code="d">Cambridge [Eng.] ; New York : Cambridge University Press, 1977</subfield><subfield code="z">0521213401</subfield><subfield code="w">(DLC) 76014034</subfield><subfield code="w">(OCoLC)2597532</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">25.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552424</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">liegroupscompact0000pric</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10440987</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552424</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25154457</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10407341</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836848801 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:16Z |
institution | BVB |
isbn | 9781107360860 1107360862 9780511600715 0511600712 |
language | English |
oclc_num | 836848801 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 177 pages) |
psigel | ZDB-4-EBA |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Price, John F. (John Frederick), 1943- https://id.oclc.org/worldcat/entity/E39PCjBkCHJHJJQXyqhmdpM8hb http://id.loc.gov/authorities/names/n85198455 Lie groups and compact groups / John F. Price. Cambridge [England] ; New York : Cambridge University Press, 1977. 1 online resource (ix, 177 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 25 Includes bibliographical references (pages 169-173) and index. Print version record. The theory of Lie groups is a very active part of mathematics and it is the twofold aim of these notes to provide a self-contained introduction to the subject and to make results about the structure of Lie groups and compact groups available to a wide audience. Particular emphasis is placed upon results and techniques which explicate the interplay between a Lie group and its Lie algebra, and, in keeping with current trends, a coordinate-free notation is used. Much of the general theory is illustrated by examples and exercises involving specific Lie groups. Cover; Title; Copyright; Contents; Preface; Chapter 1 Analytic manifolds; 1. 1 Manifolds and differentiability; 1. 2 The tangent bundle; 1. 3 Vector fields; Notes; Exercises; Chapter 2 Lie groups and Lie algebras; 2. 1 Lie groups; 2. 2 The Lie algebra of a Lie group; 2. 3 Homomorphisms of Lie groups; 2. 4 The general linear group; Notes; Exercises; Chapter 3 The Campbell-Baker-Hausdorff formula; 3.1 The CBH formula for Lie algebras; 3. 2 The CBH formula for Lie groups; 3. 3 Closed subgroups; 3. 4 Simply connected Lie groups; Notes; Exercises; Chapter 4 The geometry of Lie groups 4.1 Riemannian manifolds4. 2 Invariant metrics on Lie groups; 4. 3 Geodesies on Lie groups; Notes; Exercises; Chapter 5 Lie subgroups and subalgebras; 5.1 Subgroups and subalgebras; 5. 2 Normal subgroups and ideals; Notes; Exercises; Chapter 6 Characterisations and structure of compact Lie Groups; 6.1 Compact groups and Lie groups; 6. 2 Linear Lie groups; 6. 3 Simple and semisimple Lie algebras; 6. 4 The structure of compact Lie groups; 6. 5 Compact connected groups; Notes; Exercises; Appendix A Abstract harmonic analysis; A. 1 Topological groups; A. 2 Representations; A. 3 Compact groups A. 4 The Haar integralBibliography; Index Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Compact groups. http://id.loc.gov/authorities/subjects/sh85029280 Groupes de Lie. Groupes compacts. MATHEMATICS Algebra Linear. bisacsh Compact groups fast Lie groups fast Lie-groepen. gtt Topologische groepen. gtt Lie, Groupes de. ram Groupes compacts. ram Print version: Price, John F. (John Frederick), 1943- Lie groups and compact groups. Cambridge [Eng.] ; New York : Cambridge University Press, 1977 0521213401 (DLC) 76014034 (OCoLC)2597532 London Mathematical Society lecture note series ; 25. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552424 Volltext |
spellingShingle | Price, John F. (John Frederick), 1943- Lie groups and compact groups / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; Preface; Chapter 1 Analytic manifolds; 1. 1 Manifolds and differentiability; 1. 2 The tangent bundle; 1. 3 Vector fields; Notes; Exercises; Chapter 2 Lie groups and Lie algebras; 2. 1 Lie groups; 2. 2 The Lie algebra of a Lie group; 2. 3 Homomorphisms of Lie groups; 2. 4 The general linear group; Notes; Exercises; Chapter 3 The Campbell-Baker-Hausdorff formula; 3.1 The CBH formula for Lie algebras; 3. 2 The CBH formula for Lie groups; 3. 3 Closed subgroups; 3. 4 Simply connected Lie groups; Notes; Exercises; Chapter 4 The geometry of Lie groups 4.1 Riemannian manifolds4. 2 Invariant metrics on Lie groups; 4. 3 Geodesies on Lie groups; Notes; Exercises; Chapter 5 Lie subgroups and subalgebras; 5.1 Subgroups and subalgebras; 5. 2 Normal subgroups and ideals; Notes; Exercises; Chapter 6 Characterisations and structure of compact Lie Groups; 6.1 Compact groups and Lie groups; 6. 2 Linear Lie groups; 6. 3 Simple and semisimple Lie algebras; 6. 4 The structure of compact Lie groups; 6. 5 Compact connected groups; Notes; Exercises; Appendix A Abstract harmonic analysis; A. 1 Topological groups; A. 2 Representations; A. 3 Compact groups A. 4 The Haar integralBibliography; Index Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Compact groups. http://id.loc.gov/authorities/subjects/sh85029280 Groupes de Lie. Groupes compacts. MATHEMATICS Algebra Linear. bisacsh Compact groups fast Lie groups fast Lie-groepen. gtt Topologische groepen. gtt Lie, Groupes de. ram Groupes compacts. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076786 http://id.loc.gov/authorities/subjects/sh85029280 |
title | Lie groups and compact groups / |
title_auth | Lie groups and compact groups / |
title_exact_search | Lie groups and compact groups / |
title_full | Lie groups and compact groups / John F. Price. |
title_fullStr | Lie groups and compact groups / John F. Price. |
title_full_unstemmed | Lie groups and compact groups / John F. Price. |
title_short | Lie groups and compact groups / |
title_sort | lie groups and compact groups |
topic | Lie groups. http://id.loc.gov/authorities/subjects/sh85076786 Compact groups. http://id.loc.gov/authorities/subjects/sh85029280 Groupes de Lie. Groupes compacts. MATHEMATICS Algebra Linear. bisacsh Compact groups fast Lie groups fast Lie-groepen. gtt Topologische groepen. gtt Lie, Groupes de. ram Groupes compacts. ram |
topic_facet | Lie groups. Compact groups. Groupes de Lie. Groupes compacts. MATHEMATICS Algebra Linear. Compact groups Lie groups Lie-groepen. Topologische groepen. Lie, Groupes de. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552424 |
work_keys_str_mv | AT pricejohnf liegroupsandcompactgroups |