Shintani zeta functions /:

The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated obj...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Yukie, Akihiko
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge [England] ; New York : Cambridge University Press, 1993.
Schriftenreihe:London Mathematical Society lecture note series ; 183.
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory.
Beschreibung:1 online resource (xii, 339 pages) : illustrations
Bibliographie:Includes bibliographical references (pages 331-334) and index.
ISBN:9781107361959
1107361958
9780511662331
0511662335
1139884891
9781139884891
1107366860
9781107366862
1107371538
9781107371538
1107368545
9781107368545

Es ist kein Print-Exemplar vorhanden.

Volltext öffnen