Shintani zeta functions /:
The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated obj...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1993.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
183. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory. |
Beschreibung: | 1 online resource (xii, 339 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 331-334) and index. |
ISBN: | 9781107361959 1107361958 9780511662331 0511662335 1139884891 9781139884891 1107366860 9781107366862 1107371538 9781107371538 1107368545 9781107368545 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn836848751 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130408s1993 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d OCLCA |d REC |d STF |d M8D |d OCLCO |d UKAHL |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 715186472 |a 1119040545 |a 1162523423 |a 1241893671 |a 1242485108 | ||
020 | |a 9781107361959 |q (electronic bk.) | ||
020 | |a 1107361958 |q (electronic bk.) | ||
020 | |a 9780511662331 |q (e-book) | ||
020 | |a 0511662335 |q (e-book) | ||
020 | |a 1139884891 | ||
020 | |a 9781139884891 | ||
020 | |a 1107366860 | ||
020 | |a 9781107366862 | ||
020 | |a 1107371538 | ||
020 | |a 9781107371538 | ||
020 | |a 1107368545 | ||
020 | |a 9781107368545 | ||
020 | |z 0521448042 | ||
020 | |z 9780521448048 | ||
035 | |a (OCoLC)836848751 |z (OCoLC)715186472 |z (OCoLC)1119040545 |z (OCoLC)1162523423 |z (OCoLC)1241893671 |z (OCoLC)1242485108 | ||
050 | 4 | |a QA351 |b .Y85 1993eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.56 |2 22 | |
084 | |a 31.14 |2 bcl | ||
084 | |a *11E45 |2 msc | ||
084 | |a 11-02 |2 msc | ||
084 | |a 14-02 |2 msc | ||
084 | |a 14G10 |2 msc | ||
084 | |a 14M17 |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Yukie, Akihiko. | |
245 | 1 | 0 | |a Shintani zeta functions / |c Akihiko Yukie. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1993. | ||
300 | |a 1 online resource (xii, 339 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 183 | |
504 | |a Includes bibliographical references (pages 331-334) and index. | ||
505 | 0 | |a pt. I. The general theory. Ch. 1. Preliminaries. Ch. 2. Eisenstein series on GL(n). Ch. 3. The general program -- pt. II. The Siegel-Shintani case. Ch. 4. The zeta function for the space of quadratic forms -- pt. III. Preliminaries for the quartic case. Ch. 5. The case G = GL(2) x GL(2), V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]. Ch. 6. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k. Ch. 7. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2] -- pt. IV. The quartic case. Ch. 8. Invariant theory of pairs of ternary quadratic forms. Ch. 9. Preliminary estimates. Ch. 10. The non-constant terms associated with unstable strata. Ch. 11. Unstable distributions. Ch. 12. Contributions front unstable strata. Ch. 13. The main theorem. | |
588 | 0 | |a Print version record. | |
520 | |a The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory. | ||
546 | |a English. | ||
650 | 0 | |a Functions, Zeta. |0 http://id.loc.gov/authorities/subjects/sh85052354 | |
650 | 6 | |a Fonctions zêta. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Functions, Zeta |2 fast | |
650 | 7 | |a Shintani-Zetafunktion |2 gnd | |
650 | 1 | 7 | |a Zeta-functies. |2 gtt |
650 | 7 | |a Função zeta (teoria dos números) |2 larpcal | |
650 | 7 | |a Teoria analítica dos números. |2 larpcal | |
650 | 7 | |a Fonctions zeta. |2 ram | |
776 | 0 | 8 | |i Print version: |a Yukie, Akihiko. |t Shintani zeta functions. |d Cambridge [England] ; New York : Cambridge University Press, 1993 |z 0521448042 |w (DLC) 92045913 |w (OCoLC)27266539 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 183. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552466 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH13428504 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385339 | ||
938 | |a ebrary |b EBRY |n ebr10455740 | ||
938 | |a EBSCOhost |b EBSC |n 552466 | ||
938 | |a YBP Library Services |b YANK |n 10370347 | ||
938 | |a YBP Library Services |b YANK |n 3582187 | ||
938 | |a YBP Library Services |b YANK |n 10405624 | ||
938 | |a YBP Library Services |b YANK |n 10689707 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn836848751 |
---|---|
_version_ | 1816882228129431552 |
adam_text | |
any_adam_object | |
author | Yukie, Akihiko |
author_facet | Yukie, Akihiko |
author_role | |
author_sort | Yukie, Akihiko |
author_variant | a y ay |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA351 |
callnumber-raw | QA351 .Y85 1993eb |
callnumber-search | QA351 .Y85 1993eb |
callnumber-sort | QA 3351 Y85 41993EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | pt. I. The general theory. Ch. 1. Preliminaries. Ch. 2. Eisenstein series on GL(n). Ch. 3. The general program -- pt. II. The Siegel-Shintani case. Ch. 4. The zeta function for the space of quadratic forms -- pt. III. Preliminaries for the quartic case. Ch. 5. The case G = GL(2) x GL(2), V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]. Ch. 6. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k. Ch. 7. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2] -- pt. IV. The quartic case. Ch. 8. Invariant theory of pairs of ternary quadratic forms. Ch. 9. Preliminary estimates. Ch. 10. The non-constant terms associated with unstable strata. Ch. 11. Unstable distributions. Ch. 12. Contributions front unstable strata. Ch. 13. The main theorem. |
ctrlnum | (OCoLC)836848751 |
dewey-full | 515/.56 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.56 |
dewey-search | 515/.56 |
dewey-sort | 3515 256 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05066cam a2200853 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn836848751</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130408s1993 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCA</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UKAHL</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">715186472</subfield><subfield code="a">1119040545</subfield><subfield code="a">1162523423</subfield><subfield code="a">1241893671</subfield><subfield code="a">1242485108</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361959</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361958</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511662331</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511662335</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139884891</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139884891</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107366860</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107366862</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107371538</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107371538</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107368545</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107368545</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521448042</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521448048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836848751</subfield><subfield code="z">(OCoLC)715186472</subfield><subfield code="z">(OCoLC)1119040545</subfield><subfield code="z">(OCoLC)1162523423</subfield><subfield code="z">(OCoLC)1241893671</subfield><subfield code="z">(OCoLC)1242485108</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA351</subfield><subfield code="b">.Y85 1993eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.56</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.14</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*11E45</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14G10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14M17</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yukie, Akihiko.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Shintani zeta functions /</subfield><subfield code="c">Akihiko Yukie.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1993.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 339 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">183</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 331-334) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">pt. I. The general theory. Ch. 1. Preliminaries. Ch. 2. Eisenstein series on GL(n). Ch. 3. The general program -- pt. II. The Siegel-Shintani case. Ch. 4. The zeta function for the space of quadratic forms -- pt. III. Preliminaries for the quartic case. Ch. 5. The case G = GL(2) x GL(2), V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]. Ch. 6. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k. Ch. 7. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2] -- pt. IV. The quartic case. Ch. 8. Invariant theory of pairs of ternary quadratic forms. Ch. 9. Preliminary estimates. Ch. 10. The non-constant terms associated with unstable strata. Ch. 11. Unstable distributions. Ch. 12. Contributions front unstable strata. Ch. 13. The main theorem.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions, Zeta.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052354</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions zêta.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions, Zeta</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Shintani-Zetafunktion</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Zeta-functies.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Função zeta (teoria dos números)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Teoria analítica dos números.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fonctions zeta.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Yukie, Akihiko.</subfield><subfield code="t">Shintani zeta functions.</subfield><subfield code="d">Cambridge [England] ; New York : Cambridge University Press, 1993</subfield><subfield code="z">0521448042</subfield><subfield code="w">(DLC) 92045913</subfield><subfield code="w">(OCoLC)27266539</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">183.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552466</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH13428504</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385339</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10455740</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">552466</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10370347</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">3582187</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10405624</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10689707</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn836848751 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:16Z |
institution | BVB |
isbn | 9781107361959 1107361958 9780511662331 0511662335 1139884891 9781139884891 1107366860 9781107366862 1107371538 9781107371538 1107368545 9781107368545 |
language | English |
oclc_num | 836848751 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 339 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Yukie, Akihiko. Shintani zeta functions / Akihiko Yukie. Cambridge [England] ; New York : Cambridge University Press, 1993. 1 online resource (xii, 339 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 183 Includes bibliographical references (pages 331-334) and index. pt. I. The general theory. Ch. 1. Preliminaries. Ch. 2. Eisenstein series on GL(n). Ch. 3. The general program -- pt. II. The Siegel-Shintani case. Ch. 4. The zeta function for the space of quadratic forms -- pt. III. Preliminaries for the quartic case. Ch. 5. The case G = GL(2) x GL(2), V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]. Ch. 6. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k. Ch. 7. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2] -- pt. IV. The quartic case. Ch. 8. Invariant theory of pairs of ternary quadratic forms. Ch. 9. Preliminary estimates. Ch. 10. The non-constant terms associated with unstable strata. Ch. 11. Unstable distributions. Ch. 12. Contributions front unstable strata. Ch. 13. The main theorem. Print version record. The theory of prehomogeneous vector spaces is a relatively new subject although its origin can be traced back through the works of Siegel to Gauss. The study of the zeta functions related to prehomogeneous vector spaces can yield interesting information on the asymptotic properties of associated objects, such as field extensions and ideal classes. This is amongst the first books on this topic, and represents the author's deep study of prehomogeneous vector spaces. Here the author's aim is to generalise Shintani's approach from the viewpoint of geometric invariant theory, and in some special cases he also determines not only the pole structure but also the principal part of the zeta function. This book will be of great interest to all serious workers in analytic number theory. English. Functions, Zeta. http://id.loc.gov/authorities/subjects/sh85052354 Fonctions zêta. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functions, Zeta fast Shintani-Zetafunktion gnd Zeta-functies. gtt Função zeta (teoria dos números) larpcal Teoria analítica dos números. larpcal Fonctions zeta. ram Print version: Yukie, Akihiko. Shintani zeta functions. Cambridge [England] ; New York : Cambridge University Press, 1993 0521448042 (DLC) 92045913 (OCoLC)27266539 London Mathematical Society lecture note series ; 183. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552466 Volltext |
spellingShingle | Yukie, Akihiko Shintani zeta functions / London Mathematical Society lecture note series ; pt. I. The general theory. Ch. 1. Preliminaries. Ch. 2. Eisenstein series on GL(n). Ch. 3. The general program -- pt. II. The Siegel-Shintani case. Ch. 4. The zeta function for the space of quadratic forms -- pt. III. Preliminaries for the quartic case. Ch. 5. The case G = GL(2) x GL(2), V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2]. Ch. 6. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k. Ch. 7. The case G = GL(2) x GL(1)[superscript 2], V = Sym[superscript 2]k[superscript 2] [actual symbol not reproducible] k[superscript 2] -- pt. IV. The quartic case. Ch. 8. Invariant theory of pairs of ternary quadratic forms. Ch. 9. Preliminary estimates. Ch. 10. The non-constant terms associated with unstable strata. Ch. 11. Unstable distributions. Ch. 12. Contributions front unstable strata. Ch. 13. The main theorem. Functions, Zeta. http://id.loc.gov/authorities/subjects/sh85052354 Fonctions zêta. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functions, Zeta fast Shintani-Zetafunktion gnd Zeta-functies. gtt Função zeta (teoria dos números) larpcal Teoria analítica dos números. larpcal Fonctions zeta. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85052354 |
title | Shintani zeta functions / |
title_auth | Shintani zeta functions / |
title_exact_search | Shintani zeta functions / |
title_full | Shintani zeta functions / Akihiko Yukie. |
title_fullStr | Shintani zeta functions / Akihiko Yukie. |
title_full_unstemmed | Shintani zeta functions / Akihiko Yukie. |
title_short | Shintani zeta functions / |
title_sort | shintani zeta functions |
topic | Functions, Zeta. http://id.loc.gov/authorities/subjects/sh85052354 Fonctions zêta. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Functions, Zeta fast Shintani-Zetafunktion gnd Zeta-functies. gtt Função zeta (teoria dos números) larpcal Teoria analítica dos números. larpcal Fonctions zeta. ram |
topic_facet | Functions, Zeta. Fonctions zêta. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Functions, Zeta Shintani-Zetafunktion Zeta-functies. Função zeta (teoria dos números) Teoria analítica dos números. Fonctions zeta. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=552466 |
work_keys_str_mv | AT yukieakihiko shintanizetafunctions |