Function spaces.: Volume 1 /
This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
De Gruyter,
2013.
|
Ausgabe: | 2nd rev. and extended ed. |
Schriftenreihe: | De Gruyter series in nonlinear analysis and applications ;
14. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volume 1 deals with Banach function spaces, Volume 2 with Sobolev-type spaces. |
Beschreibung: | 1 online resource (xv, 479 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110250428 311025042X 3110250411 9783110250411 |
ISSN: | 0941-813X ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn834558358 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 130307s2013 gw a ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d OCLCO |d N$T |d OCLCA |d AUW |d OCLCF |d OCLCQ |d DEBSZ |d LOA |d COCUF |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d CRU |d OCLCQ |d INT |d AU@ |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
066 | |c (S | ||
019 | |a 961552694 |a 962687144 |a 974664144 |a 974770122 |a 1018033893 |a 1043667331 |a 1058138215 |a 1058150479 |a 1087040701 |a 1097138087 |a 1124320659 | ||
020 | |a 9783110250428 |q (electronic bk.) | ||
020 | |a 311025042X |q (electronic bk.) | ||
020 | |a 3110250411 | ||
020 | |a 9783110250411 | ||
020 | |z 9783110250411 | ||
024 | 7 | |a 10.1515/9783110250428 |2 doi | |
035 | |a (OCoLC)834558358 |z (OCoLC)961552694 |z (OCoLC)962687144 |z (OCoLC)974664144 |z (OCoLC)974770122 |z (OCoLC)1018033893 |z (OCoLC)1043667331 |z (OCoLC)1058138215 |z (OCoLC)1058150479 |z (OCoLC)1087040701 |z (OCoLC)1097138087 |z (OCoLC)1124320659 | ||
050 | 4 | |a QA323 | |
072 | 7 | |a MAT |x 031000 |2 bisacsh | |
082 | 7 | |a 515.73 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Function spaces. |n Volume 1 / |c Luboš Pick [and others]. |
250 | |a 2nd rev. and extended ed. | ||
260 | |a Berlin : |b De Gruyter, |c 2013. | ||
300 | |a 1 online resource (xv, 479 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter series in nonlinear analysis and applications, |x 0941-813X ; |v 14 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface; 1 Preliminaries; 1.1 Vector space; 1.2 Topological spaces; 1.3 Metric, metric space; 1.4 Norm, normed linear space; 1.5 Modular spaces; 1.6 Inner product, inner product space; 1.7 Convergence, Cauchy sequences; 1.8 Density, separability; 1.9 Completeness; 1.10 Subspaces; 1.11 Products of spaces; 1.12 Schauder bases; 1.13 Compactness; 1.14 Operators (mappings); 1.15 Isomorphism, embeddings; 1.16 Continuous linear functionals; 1.17 Dual space, weak convergence; 1.18 The principle of uniform boundedness; 1.19 Reflexivity; 1.20 Measure spaces: general extension theory. | |
505 | 8 | |a 1.21 The Lebesgue measure and integral1.22 Modes of convergence; 1.23 Systems of seminorms, Hahn-Saks theorem; 2 Spaces of smooth functions; 2.1 Multiindices and derivatives; 2.2 Classes of continuous and smooth functions; 2.3 Completeness; 2.4 Separability, bases; 2.5 Compactness; 2.6 Continuous linear functionals; 2.7 Extension of functions; 3 Lebesgue spaces; 3.1 Lp-classes; 3.2 Lebesgue spaces; 3.3 Mean continuity; 3.4 Mollifiers; 3.5 Density of smooth functions; 3.6 Separability; 3.7 Completeness; 3.8 The dual space; 3.9 Reflexivity; 3.10 The space L8; 3.11 Hardy inequalities. | |
505 | 8 | |a 6.4 Reflexivity of Banach function spaces6.5 Separability in Banach function spaces; 7 Rearrangement-invariant spaces; 7.1 Nonincreasing rearrangements; 7.2 Hardy-Littlewood inequality; 7.3 Resonant measure spaces; 7.4 Maximal nonincreasing rearrangement; 7.5 Hardy lemma; 7.6 Rearrangement-invariant spaces; 7.7 Hardy-Littlewood-Pólya principle; 7.8 Luxemburg representation theorem; 7.9 Fundamental function; 7.10 Endpoint spaces; 7.11 Almost-compact embeddings; 7.12 Gould space; 8 Lorentz spaces; 8.1 Definition and basic properties; 8.2 Embeddings between Lorentz spaces. | |
520 | |a This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volume 1 deals with Banach function spaces, Volume 2 with Sobolev-type spaces. | ||
546 | |a English. | ||
650 | 0 | |a Ideal spaces. |0 http://id.loc.gov/authorities/subjects/sh97004453 | |
650 | 0 | |a Sobolev spaces. |0 http://id.loc.gov/authorities/subjects/sh85123836 | |
650 | 0 | |a Function spaces. |0 http://id.loc.gov/authorities/subjects/sh85052310 | |
650 | 4 | |a Function spaces |v Congresses. | |
650 | 4 | |a Functional analysis. | |
650 | 4 | |a Mathematics. | |
650 | 6 | |a Espaces parfaits. | |
650 | 6 | |a Espaces de Sobolev. | |
650 | 6 | |a Espaces fonctionnels. | |
650 | 7 | |a MATHEMATICS |x Transformations. |2 bisacsh | |
650 | 7 | |a Function spaces |2 fast | |
650 | 7 | |a Ideal spaces |2 fast | |
650 | 7 | |a Sobolev spaces |2 fast | |
700 | 1 | |a Pick, Luboš. |0 http://id.loc.gov/authorities/names/n2013004016 | |
758 | |i has work: |a Volume 1 Function spaces (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG6Qq4HhwJrYH4fxqrhMpq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Kufner, Alois. |t Function Spaces, Volume 1. |d Berlin : De Gruyter, ©2012 |z 9783110250411 |
830 | 0 | |a De Gruyter series in nonlinear analysis and applications ; |v 14. |x 0941-813X |0 http://id.loc.gov/authorities/names/n92047842 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=543942 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=543942 |3 Volltext |
880 | 8 | |6 505-00/(S |a 3.12 Sequence spaces 3.13 Modes of convergence; 3.14 Compact subsets; 3.15 Weak convergence; 3.16 Isomorphism of Lp(O) and Lp(0, μ(O)); 3.17 Schauder bases; 3.18 Weak Lebesgue spaces; 3.19 Remarks; 4 Orlicz spaces; 4.1 Introduction; 4.2 Young function, Jensen inequality; 4.3 Complementary functions; 4.4 The Δ2-condition; 4.5 Comparison of Orlicz classes; 4.6 Orlicz spaces; 4.7 Hölder inequality in Orlicz spaces; 4.8 The Luxemburg norm; 4.9 Completeness of Orlicz spaces; 4.10 Convergence in Orlicz spaces; 4.11 Separability; 4.12 The space EΦ(Ω); 4.13 Continuous linear functionals. | |
880 | 8 | |6 505-00/(S |a 4.14 Compact subsets of Orlicz spaces 4.15 Further properties of Orlicz spaces; 4.16 Isomorphism properties, Schauder bases; 4.17 Comparison of Orlicz spaces; 5 Morrey and Campanato spaces; 5.1 Introduction; 5.2 Marcinkiewicz spaces; 5.3 Morrey and Campanato spaces; 5.4 Completeness; 5.5 Relations to Lebesgue spaces; 5.6 Some lemmas; 5.7 Embeddings; 5.8 The John-Nirenberg space; 5.9 Another definition of the space JN(Q); 5.10 Spaces Np; λ(Q); 5.11 Miscellaneous remarks; 6 Banach function spaces; 6.1 Banach function spaces; 6.2 Associate space; 6.3 Absolute continuity of the norm. | |
938 | |a ebrary |b EBRY |n ebr10661461 | ||
938 | |a EBSCOhost |b EBSC |n 543942 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn834558358 |
---|---|
_version_ | 1829094954005168128 |
adam_text | |
any_adam_object | |
author2 | Pick, Luboš |
author2_role | |
author2_variant | l p lp |
author_GND | http://id.loc.gov/authorities/names/n2013004016 |
author_facet | Pick, Luboš |
author_sort | Pick, Luboš |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA323 |
callnumber-raw | QA323 |
callnumber-search | QA323 |
callnumber-sort | QA 3323 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface; 1 Preliminaries; 1.1 Vector space; 1.2 Topological spaces; 1.3 Metric, metric space; 1.4 Norm, normed linear space; 1.5 Modular spaces; 1.6 Inner product, inner product space; 1.7 Convergence, Cauchy sequences; 1.8 Density, separability; 1.9 Completeness; 1.10 Subspaces; 1.11 Products of spaces; 1.12 Schauder bases; 1.13 Compactness; 1.14 Operators (mappings); 1.15 Isomorphism, embeddings; 1.16 Continuous linear functionals; 1.17 Dual space, weak convergence; 1.18 The principle of uniform boundedness; 1.19 Reflexivity; 1.20 Measure spaces: general extension theory. 1.21 The Lebesgue measure and integral1.22 Modes of convergence; 1.23 Systems of seminorms, Hahn-Saks theorem; 2 Spaces of smooth functions; 2.1 Multiindices and derivatives; 2.2 Classes of continuous and smooth functions; 2.3 Completeness; 2.4 Separability, bases; 2.5 Compactness; 2.6 Continuous linear functionals; 2.7 Extension of functions; 3 Lebesgue spaces; 3.1 Lp-classes; 3.2 Lebesgue spaces; 3.3 Mean continuity; 3.4 Mollifiers; 3.5 Density of smooth functions; 3.6 Separability; 3.7 Completeness; 3.8 The dual space; 3.9 Reflexivity; 3.10 The space L8; 3.11 Hardy inequalities. 6.4 Reflexivity of Banach function spaces6.5 Separability in Banach function spaces; 7 Rearrangement-invariant spaces; 7.1 Nonincreasing rearrangements; 7.2 Hardy-Littlewood inequality; 7.3 Resonant measure spaces; 7.4 Maximal nonincreasing rearrangement; 7.5 Hardy lemma; 7.6 Rearrangement-invariant spaces; 7.7 Hardy-Littlewood-Pólya principle; 7.8 Luxemburg representation theorem; 7.9 Fundamental function; 7.10 Endpoint spaces; 7.11 Almost-compact embeddings; 7.12 Gould space; 8 Lorentz spaces; 8.1 Definition and basic properties; 8.2 Embeddings between Lorentz spaces. |
ctrlnum | (OCoLC)834558358 |
dewey-full | 515.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.73 |
dewey-search | 515.73 |
dewey-sort | 3515.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd rev. and extended ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06520cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn834558358</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">130307s2013 gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCA</subfield><subfield code="d">AUW</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">CRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961552694</subfield><subfield code="a">962687144</subfield><subfield code="a">974664144</subfield><subfield code="a">974770122</subfield><subfield code="a">1018033893</subfield><subfield code="a">1043667331</subfield><subfield code="a">1058138215</subfield><subfield code="a">1058150479</subfield><subfield code="a">1087040701</subfield><subfield code="a">1097138087</subfield><subfield code="a">1124320659</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250428</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">311025042X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110250411</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110250411</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110250411</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110250428</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)834558358</subfield><subfield code="z">(OCoLC)961552694</subfield><subfield code="z">(OCoLC)962687144</subfield><subfield code="z">(OCoLC)974664144</subfield><subfield code="z">(OCoLC)974770122</subfield><subfield code="z">(OCoLC)1018033893</subfield><subfield code="z">(OCoLC)1043667331</subfield><subfield code="z">(OCoLC)1058138215</subfield><subfield code="z">(OCoLC)1058150479</subfield><subfield code="z">(OCoLC)1087040701</subfield><subfield code="z">(OCoLC)1097138087</subfield><subfield code="z">(OCoLC)1124320659</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA323</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">031000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.73</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Function spaces.</subfield><subfield code="n">Volume 1 /</subfield><subfield code="c">Luboš Pick [and others].</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd rev. and extended ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xv, 479 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in nonlinear analysis and applications,</subfield><subfield code="x">0941-813X ;</subfield><subfield code="v">14</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; 1 Preliminaries; 1.1 Vector space; 1.2 Topological spaces; 1.3 Metric, metric space; 1.4 Norm, normed linear space; 1.5 Modular spaces; 1.6 Inner product, inner product space; 1.7 Convergence, Cauchy sequences; 1.8 Density, separability; 1.9 Completeness; 1.10 Subspaces; 1.11 Products of spaces; 1.12 Schauder bases; 1.13 Compactness; 1.14 Operators (mappings); 1.15 Isomorphism, embeddings; 1.16 Continuous linear functionals; 1.17 Dual space, weak convergence; 1.18 The principle of uniform boundedness; 1.19 Reflexivity; 1.20 Measure spaces: general extension theory.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.21 The Lebesgue measure and integral1.22 Modes of convergence; 1.23 Systems of seminorms, Hahn-Saks theorem; 2 Spaces of smooth functions; 2.1 Multiindices and derivatives; 2.2 Classes of continuous and smooth functions; 2.3 Completeness; 2.4 Separability, bases; 2.5 Compactness; 2.6 Continuous linear functionals; 2.7 Extension of functions; 3 Lebesgue spaces; 3.1 Lp-classes; 3.2 Lebesgue spaces; 3.3 Mean continuity; 3.4 Mollifiers; 3.5 Density of smooth functions; 3.6 Separability; 3.7 Completeness; 3.8 The dual space; 3.9 Reflexivity; 3.10 The space L8; 3.11 Hardy inequalities.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.4 Reflexivity of Banach function spaces6.5 Separability in Banach function spaces; 7 Rearrangement-invariant spaces; 7.1 Nonincreasing rearrangements; 7.2 Hardy-Littlewood inequality; 7.3 Resonant measure spaces; 7.4 Maximal nonincreasing rearrangement; 7.5 Hardy lemma; 7.6 Rearrangement-invariant spaces; 7.7 Hardy-Littlewood-Pólya principle; 7.8 Luxemburg representation theorem; 7.9 Fundamental function; 7.10 Endpoint spaces; 7.11 Almost-compact embeddings; 7.12 Gould space; 8 Lorentz spaces; 8.1 Definition and basic properties; 8.2 Embeddings between Lorentz spaces.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volume 1 deals with Banach function spaces, Volume 2 with Sobolev-type spaces.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ideal spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97004453</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Sobolev spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85123836</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Function spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052310</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Function spaces</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces parfaits.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Sobolev.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces fonctionnels.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Transformations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Function spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ideal spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Sobolev spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pick, Luboš.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2013004016</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Volume 1 Function spaces (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG6Qq4HhwJrYH4fxqrhMpq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kufner, Alois.</subfield><subfield code="t">Function Spaces, Volume 1.</subfield><subfield code="d">Berlin : De Gruyter, ©2012</subfield><subfield code="z">9783110250411</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in nonlinear analysis and applications ;</subfield><subfield code="v">14.</subfield><subfield code="x">0941-813X</subfield><subfield code="0">http://id.loc.gov/authorities/names/n92047842</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=543942</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=543942</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">3.12 Sequence spaces 3.13 Modes of convergence; 3.14 Compact subsets; 3.15 Weak convergence; 3.16 Isomorphism of Lp(O) and Lp(0, μ(O)); 3.17 Schauder bases; 3.18 Weak Lebesgue spaces; 3.19 Remarks; 4 Orlicz spaces; 4.1 Introduction; 4.2 Young function, Jensen inequality; 4.3 Complementary functions; 4.4 The Δ2-condition; 4.5 Comparison of Orlicz classes; 4.6 Orlicz spaces; 4.7 Hölder inequality in Orlicz spaces; 4.8 The Luxemburg norm; 4.9 Completeness of Orlicz spaces; 4.10 Convergence in Orlicz spaces; 4.11 Separability; 4.12 The space EΦ(Ω); 4.13 Continuous linear functionals.</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-00/(S</subfield><subfield code="a">4.14 Compact subsets of Orlicz spaces 4.15 Further properties of Orlicz spaces; 4.16 Isomorphism properties, Schauder bases; 4.17 Comparison of Orlicz spaces; 5 Morrey and Campanato spaces; 5.1 Introduction; 5.2 Marcinkiewicz spaces; 5.3 Morrey and Campanato spaces; 5.4 Completeness; 5.5 Relations to Lebesgue spaces; 5.6 Some lemmas; 5.7 Embeddings; 5.8 The John-Nirenberg space; 5.9 Another definition of the space JN(Q); 5.10 Spaces Np; λ(Q); 5.11 Miscellaneous remarks; 6 Banach function spaces; 6.1 Banach function spaces; 6.2 Associate space; 6.3 Absolute continuity of the norm.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10661461</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">543942</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn834558358 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:41:19Z |
institution | BVB |
isbn | 9783110250428 311025042X 3110250411 9783110250411 |
issn | 0941-813X ; |
language | English |
oclc_num | 834558358 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (xv, 479 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter series in nonlinear analysis and applications ; |
series2 | De Gruyter series in nonlinear analysis and applications, |
spelling | Function spaces. Volume 1 / Luboš Pick [and others]. 2nd rev. and extended ed. Berlin : De Gruyter, 2013. 1 online resource (xv, 479 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter series in nonlinear analysis and applications, 0941-813X ; 14 Includes bibliographical references and index. Preface; 1 Preliminaries; 1.1 Vector space; 1.2 Topological spaces; 1.3 Metric, metric space; 1.4 Norm, normed linear space; 1.5 Modular spaces; 1.6 Inner product, inner product space; 1.7 Convergence, Cauchy sequences; 1.8 Density, separability; 1.9 Completeness; 1.10 Subspaces; 1.11 Products of spaces; 1.12 Schauder bases; 1.13 Compactness; 1.14 Operators (mappings); 1.15 Isomorphism, embeddings; 1.16 Continuous linear functionals; 1.17 Dual space, weak convergence; 1.18 The principle of uniform boundedness; 1.19 Reflexivity; 1.20 Measure spaces: general extension theory. 1.21 The Lebesgue measure and integral1.22 Modes of convergence; 1.23 Systems of seminorms, Hahn-Saks theorem; 2 Spaces of smooth functions; 2.1 Multiindices and derivatives; 2.2 Classes of continuous and smooth functions; 2.3 Completeness; 2.4 Separability, bases; 2.5 Compactness; 2.6 Continuous linear functionals; 2.7 Extension of functions; 3 Lebesgue spaces; 3.1 Lp-classes; 3.2 Lebesgue spaces; 3.3 Mean continuity; 3.4 Mollifiers; 3.5 Density of smooth functions; 3.6 Separability; 3.7 Completeness; 3.8 The dual space; 3.9 Reflexivity; 3.10 The space L8; 3.11 Hardy inequalities. 6.4 Reflexivity of Banach function spaces6.5 Separability in Banach function spaces; 7 Rearrangement-invariant spaces; 7.1 Nonincreasing rearrangements; 7.2 Hardy-Littlewood inequality; 7.3 Resonant measure spaces; 7.4 Maximal nonincreasing rearrangement; 7.5 Hardy lemma; 7.6 Rearrangement-invariant spaces; 7.7 Hardy-Littlewood-Pólya principle; 7.8 Luxemburg representation theorem; 7.9 Fundamental function; 7.10 Endpoint spaces; 7.11 Almost-compact embeddings; 7.12 Gould space; 8 Lorentz spaces; 8.1 Definition and basic properties; 8.2 Embeddings between Lorentz spaces. This is the first part of the second revised and extended edition of a well established monograph. It is an introduction to function spaces defined in terms of differentiability and integrability classes. It provides a catalogue of various spaces and benefits as a handbook for those who use function spaces to study other topics such as partial differential equations. Volume 1 deals with Banach function spaces, Volume 2 with Sobolev-type spaces. English. Ideal spaces. http://id.loc.gov/authorities/subjects/sh97004453 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Function spaces Congresses. Functional analysis. Mathematics. Espaces parfaits. Espaces de Sobolev. Espaces fonctionnels. MATHEMATICS Transformations. bisacsh Function spaces fast Ideal spaces fast Sobolev spaces fast Pick, Luboš. http://id.loc.gov/authorities/names/n2013004016 has work: Volume 1 Function spaces (Text) https://id.oclc.org/worldcat/entity/E39PCG6Qq4HhwJrYH4fxqrhMpq https://id.oclc.org/worldcat/ontology/hasWork Print version: Kufner, Alois. Function Spaces, Volume 1. Berlin : De Gruyter, ©2012 9783110250411 De Gruyter series in nonlinear analysis and applications ; 14. 0941-813X http://id.loc.gov/authorities/names/n92047842 505-00/(S 3.12 Sequence spaces 3.13 Modes of convergence; 3.14 Compact subsets; 3.15 Weak convergence; 3.16 Isomorphism of Lp(O) and Lp(0, μ(O)); 3.17 Schauder bases; 3.18 Weak Lebesgue spaces; 3.19 Remarks; 4 Orlicz spaces; 4.1 Introduction; 4.2 Young function, Jensen inequality; 4.3 Complementary functions; 4.4 The Δ2-condition; 4.5 Comparison of Orlicz classes; 4.6 Orlicz spaces; 4.7 Hölder inequality in Orlicz spaces; 4.8 The Luxemburg norm; 4.9 Completeness of Orlicz spaces; 4.10 Convergence in Orlicz spaces; 4.11 Separability; 4.12 The space EΦ(Ω); 4.13 Continuous linear functionals. 505-00/(S 4.14 Compact subsets of Orlicz spaces 4.15 Further properties of Orlicz spaces; 4.16 Isomorphism properties, Schauder bases; 4.17 Comparison of Orlicz spaces; 5 Morrey and Campanato spaces; 5.1 Introduction; 5.2 Marcinkiewicz spaces; 5.3 Morrey and Campanato spaces; 5.4 Completeness; 5.5 Relations to Lebesgue spaces; 5.6 Some lemmas; 5.7 Embeddings; 5.8 The John-Nirenberg space; 5.9 Another definition of the space JN(Q); 5.10 Spaces Np; λ(Q); 5.11 Miscellaneous remarks; 6 Banach function spaces; 6.1 Banach function spaces; 6.2 Associate space; 6.3 Absolute continuity of the norm. |
spellingShingle | Function spaces. De Gruyter series in nonlinear analysis and applications ; Preface; 1 Preliminaries; 1.1 Vector space; 1.2 Topological spaces; 1.3 Metric, metric space; 1.4 Norm, normed linear space; 1.5 Modular spaces; 1.6 Inner product, inner product space; 1.7 Convergence, Cauchy sequences; 1.8 Density, separability; 1.9 Completeness; 1.10 Subspaces; 1.11 Products of spaces; 1.12 Schauder bases; 1.13 Compactness; 1.14 Operators (mappings); 1.15 Isomorphism, embeddings; 1.16 Continuous linear functionals; 1.17 Dual space, weak convergence; 1.18 The principle of uniform boundedness; 1.19 Reflexivity; 1.20 Measure spaces: general extension theory. 1.21 The Lebesgue measure and integral1.22 Modes of convergence; 1.23 Systems of seminorms, Hahn-Saks theorem; 2 Spaces of smooth functions; 2.1 Multiindices and derivatives; 2.2 Classes of continuous and smooth functions; 2.3 Completeness; 2.4 Separability, bases; 2.5 Compactness; 2.6 Continuous linear functionals; 2.7 Extension of functions; 3 Lebesgue spaces; 3.1 Lp-classes; 3.2 Lebesgue spaces; 3.3 Mean continuity; 3.4 Mollifiers; 3.5 Density of smooth functions; 3.6 Separability; 3.7 Completeness; 3.8 The dual space; 3.9 Reflexivity; 3.10 The space L8; 3.11 Hardy inequalities. 6.4 Reflexivity of Banach function spaces6.5 Separability in Banach function spaces; 7 Rearrangement-invariant spaces; 7.1 Nonincreasing rearrangements; 7.2 Hardy-Littlewood inequality; 7.3 Resonant measure spaces; 7.4 Maximal nonincreasing rearrangement; 7.5 Hardy lemma; 7.6 Rearrangement-invariant spaces; 7.7 Hardy-Littlewood-Pólya principle; 7.8 Luxemburg representation theorem; 7.9 Fundamental function; 7.10 Endpoint spaces; 7.11 Almost-compact embeddings; 7.12 Gould space; 8 Lorentz spaces; 8.1 Definition and basic properties; 8.2 Embeddings between Lorentz spaces. Ideal spaces. http://id.loc.gov/authorities/subjects/sh97004453 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Function spaces Congresses. Functional analysis. Mathematics. Espaces parfaits. Espaces de Sobolev. Espaces fonctionnels. MATHEMATICS Transformations. bisacsh Function spaces fast Ideal spaces fast Sobolev spaces fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh97004453 http://id.loc.gov/authorities/subjects/sh85123836 http://id.loc.gov/authorities/subjects/sh85052310 |
title | Function spaces. |
title_auth | Function spaces. |
title_exact_search | Function spaces. |
title_full | Function spaces. Volume 1 / Luboš Pick [and others]. |
title_fullStr | Function spaces. Volume 1 / Luboš Pick [and others]. |
title_full_unstemmed | Function spaces. Volume 1 / Luboš Pick [and others]. |
title_short | Function spaces. |
title_sort | function spaces |
topic | Ideal spaces. http://id.loc.gov/authorities/subjects/sh97004453 Sobolev spaces. http://id.loc.gov/authorities/subjects/sh85123836 Function spaces. http://id.loc.gov/authorities/subjects/sh85052310 Function spaces Congresses. Functional analysis. Mathematics. Espaces parfaits. Espaces de Sobolev. Espaces fonctionnels. MATHEMATICS Transformations. bisacsh Function spaces fast Ideal spaces fast Sobolev spaces fast |
topic_facet | Ideal spaces. Sobolev spaces. Function spaces. Function spaces Congresses. Functional analysis. Mathematics. Espaces parfaits. Espaces de Sobolev. Espaces fonctionnels. MATHEMATICS Transformations. Function spaces Ideal spaces Sobolev spaces |
work_keys_str_mv | AT picklubos functionspacesvolume1 |