Simple Lie algebras over fields of positive characteristic.: III, Completion of the classification /
"The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p> 0 is a long-standing one. Work on this question during the last 45 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
De Gruyter,
©2013.
|
Schriftenreihe: | De Gruyter expositions in mathematics ;
57. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p> 0 is a long-standing one. Work on this question during the last 45 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p> 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p> 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p> 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every finite-dimensional simple Lie algebra over an algebraically closed field of characteristic p> 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic leading to the forefront of current research in this field. This is the last of three volumes. In this monograph the proof of the Classification Theorem presented in the first volume is concluded. It collects all the important results on the topic which can be found only in scattered scientific literature so far."--Publisher's website. |
Beschreibung: | Print version cataloged as a monographic set by Library of Congress. |
Beschreibung: | 1 online resource (x, 238 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9783110263015 3110263017 3110262983 9783110262988 |
ISSN: | 0938-6572 ; |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn834558336 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 130306s2013 gw a ob 000 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d OCLCO |d AUW |d N$T |d OCLCF |d LRU |d YDXCP |d I9W |d OCLCQ |d LOA |d UIU |d AGLDB |d COCUF |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d INT |d AU@ |d OCLCQ |d WYU |d TKN |d OCLCQ |d UKAHL |d OCLCQ |d ADU |d UKCRE |d VLY |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d OCLCL | ||
019 | |a 908089191 |a 961658053 |a 962652822 |a 1113190033 |a 1153537651 |a 1162042511 | ||
020 | |a 9783110263015 |q (electronic bk.) | ||
020 | |a 3110263017 |q (electronic bk.) | ||
020 | |a 3110262983 |q (print) | ||
020 | |a 9783110262988 |q (print) | ||
020 | |z 9783110262988 | ||
024 | 3 | |a 9783110263015 | |
035 | |a (OCoLC)834558336 |z (OCoLC)908089191 |z (OCoLC)961658053 |z (OCoLC)962652822 |z (OCoLC)1113190033 |z (OCoLC)1153537651 |z (OCoLC)1162042511 | ||
037 | |n Title subscribed to via ProQuest Academic Complete | ||
050 | 4 | |a QA252.3 |b .S77 2013eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512.55 | |
049 | |a MAIN | ||
100 | 1 | |a Strade, Helmut, |d 1942- |1 https://id.oclc.org/worldcat/entity/E39PBJghrhQpmKy64pP8QqMXVC |0 http://id.loc.gov/authorities/names/n86008393 | |
245 | 1 | 0 | |a Simple Lie algebras over fields of positive characteristic. |n III, |p Completion of the classification / |c by Helmut Strade. |
246 | 3 | 0 | |a Completion of the classification |
260 | |a Berlin : |b De Gruyter, |c ©2013. | ||
300 | |a 1 online resource (x, 238 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter expositions in mathematics, |x 0938-6572 ; |v 57 | |
500 | |a Print version cataloged as a monographic set by Library of Congress. | ||
504 | |a Includes bibliographical references. | ||
520 | |a "The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p> 0 is a long-standing one. Work on this question during the last 45 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p> 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p> 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p> 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every finite-dimensional simple Lie algebra over an algebraically closed field of characteristic p> 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic leading to the forefront of current research in this field. This is the last of three volumes. In this monograph the proof of the Classification Theorem presented in the first volume is concluded. It collects all the important results on the topic which can be found only in scattered scientific literature so far."--Publisher's website. | ||
588 | 0 | |a Online resource; title from digital title page (viewed May 29, 2014). | |
505 | 8 | |a 19 Solving the case when all T-roots are solvable19.1 2-sections revisited; 19.2 The case when TR(L) = 3; 19.3 Solvable sections; 19.4 Conclusion; 20 Attacking the general case; 20.1 Optimal tori; 20.2 Root spaces in 2-sections; 20.3 The distinguished subalgebra Q(L, T); 20.4 Pushing the classical case; 20.5 The filtration defined by Q(L, T); 20.6 Determining G(L, T); 20.7 Completing the classification; 20.8 Epilogue; Notation; Bibliography. | |
546 | |a English. | ||
650 | 0 | |a Lie algebras. |0 http://id.loc.gov/authorities/subjects/sh85076782 | |
650 | 6 | |a Algèbres de Lie. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Lie algebras |2 fast | |
758 | |i has work: |a III Completion of the classification Simple Lie algebras over fields of positive characteristic (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGYxq4d8XQhpfHhGvxYCcd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Strade, Helmut, 1942- |t Simple Lie algebras over fields of positive characteristic. |d New York : Walter de Gruyter, 2004-<2013-> |z 3110142112 |w (DLC) 2004043901 |w (OCoLC)54460444 |
830 | 0 | |a De Gruyter expositions in mathematics ; |v 57. |x 0938-6572 |0 http://id.loc.gov/authorities/names/n90653843 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=544006 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25311399 | ||
938 | |a ebrary |b EBRY |n ebr10661457 | ||
938 | |a EBSCOhost |b EBSC |n 544006 | ||
938 | |a YBP Library Services |b YANK |n 9340286 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn834558336 |
---|---|
_version_ | 1816882227296862208 |
adam_text | |
any_adam_object | |
author | Strade, Helmut, 1942- |
author_GND | http://id.loc.gov/authorities/names/n86008393 |
author_facet | Strade, Helmut, 1942- |
author_role | |
author_sort | Strade, Helmut, 1942- |
author_variant | h s hs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA252 |
callnumber-raw | QA252.3 .S77 2013eb |
callnumber-search | QA252.3 .S77 2013eb |
callnumber-sort | QA 3252.3 S77 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 19 Solving the case when all T-roots are solvable19.1 2-sections revisited; 19.2 The case when TR(L) = 3; 19.3 Solvable sections; 19.4 Conclusion; 20 Attacking the general case; 20.1 Optimal tori; 20.2 Root spaces in 2-sections; 20.3 The distinguished subalgebra Q(L, T); 20.4 Pushing the classical case; 20.5 The filtration defined by Q(L, T); 20.6 Determining G(L, T); 20.7 Completing the classification; 20.8 Epilogue; Notation; Bibliography. |
ctrlnum | (OCoLC)834558336 |
dewey-full | 512.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.55 |
dewey-search | 512.55 |
dewey-sort | 3512.55 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05158cam a2200601 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn834558336</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">130306s2013 gw a ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AUW</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">LRU</subfield><subfield code="d">YDXCP</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ADU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">908089191</subfield><subfield code="a">961658053</subfield><subfield code="a">962652822</subfield><subfield code="a">1113190033</subfield><subfield code="a">1153537651</subfield><subfield code="a">1162042511</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110263015</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110263017</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110262983</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110262988</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110262988</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110263015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)834558336</subfield><subfield code="z">(OCoLC)908089191</subfield><subfield code="z">(OCoLC)961658053</subfield><subfield code="z">(OCoLC)962652822</subfield><subfield code="z">(OCoLC)1113190033</subfield><subfield code="z">(OCoLC)1153537651</subfield><subfield code="z">(OCoLC)1162042511</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="n">Title subscribed to via ProQuest Academic Complete</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA252.3</subfield><subfield code="b">.S77 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.55</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Strade, Helmut,</subfield><subfield code="d">1942-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJghrhQpmKy64pP8QqMXVC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86008393</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simple Lie algebras over fields of positive characteristic.</subfield><subfield code="n">III,</subfield><subfield code="p">Completion of the classification /</subfield><subfield code="c">by Helmut Strade.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Completion of the classification</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">©2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 238 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter expositions in mathematics,</subfield><subfield code="x">0938-6572 ;</subfield><subfield code="v">57</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version cataloged as a monographic set by Library of Congress.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p> 0 is a long-standing one. Work on this question during the last 45 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p> 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p> 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p> 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every finite-dimensional simple Lie algebra over an algebraically closed field of characteristic p> 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic leading to the forefront of current research in this field. This is the last of three volumes. In this monograph the proof of the Classification Theorem presented in the first volume is concluded. It collects all the important results on the topic which can be found only in scattered scientific literature so far."--Publisher's website.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Online resource; title from digital title page (viewed May 29, 2014).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">19 Solving the case when all T-roots are solvable19.1 2-sections revisited; 19.2 The case when TR(L) = 3; 19.3 Solvable sections; 19.4 Conclusion; 20 Attacking the general case; 20.1 Optimal tori; 20.2 Root spaces in 2-sections; 20.3 The distinguished subalgebra Q(L, T); 20.4 Pushing the classical case; 20.5 The filtration defined by Q(L, T); 20.6 Determining G(L, T); 20.7 Completing the classification; 20.8 Epilogue; Notation; Bibliography.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Lie algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85076782</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres de Lie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">III Completion of the classification Simple Lie algebras over fields of positive characteristic (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGYxq4d8XQhpfHhGvxYCcd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Strade, Helmut, 1942-</subfield><subfield code="t">Simple Lie algebras over fields of positive characteristic.</subfield><subfield code="d">New York : Walter de Gruyter, 2004-<2013-></subfield><subfield code="z">3110142112</subfield><subfield code="w">(DLC) 2004043901</subfield><subfield code="w">(OCoLC)54460444</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter expositions in mathematics ;</subfield><subfield code="v">57.</subfield><subfield code="x">0938-6572</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90653843</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=544006</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25311399</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10661457</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">544006</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9340286</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn834558336 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:16Z |
institution | BVB |
isbn | 9783110263015 3110263017 3110262983 9783110262988 |
issn | 0938-6572 ; |
language | English |
oclc_num | 834558336 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 238 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter expositions in mathematics ; |
series2 | De Gruyter expositions in mathematics, |
spelling | Strade, Helmut, 1942- https://id.oclc.org/worldcat/entity/E39PBJghrhQpmKy64pP8QqMXVC http://id.loc.gov/authorities/names/n86008393 Simple Lie algebras over fields of positive characteristic. III, Completion of the classification / by Helmut Strade. Completion of the classification Berlin : De Gruyter, ©2013. 1 online resource (x, 238 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter expositions in mathematics, 0938-6572 ; 57 Print version cataloged as a monographic set by Library of Congress. Includes bibliographical references. "The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic p> 0 is a long-standing one. Work on this question during the last 45 years has been directed by the Kostrikin-Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic p> 5 a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for p> 7 by Block and Wilson in 1988. The generalization of the Kostrikin-Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and p> 7 was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block-Wilson-Strade-Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every finite-dimensional simple Lie algebra over an algebraically closed field of characteristic p> 3 is of classical, Cartan, or Melikian type. In the three-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic leading to the forefront of current research in this field. This is the last of three volumes. In this monograph the proof of the Classification Theorem presented in the first volume is concluded. It collects all the important results on the topic which can be found only in scattered scientific literature so far."--Publisher's website. Online resource; title from digital title page (viewed May 29, 2014). 19 Solving the case when all T-roots are solvable19.1 2-sections revisited; 19.2 The case when TR(L) = 3; 19.3 Solvable sections; 19.4 Conclusion; 20 Attacking the general case; 20.1 Optimal tori; 20.2 Root spaces in 2-sections; 20.3 The distinguished subalgebra Q(L, T); 20.4 Pushing the classical case; 20.5 The filtration defined by Q(L, T); 20.6 Determining G(L, T); 20.7 Completing the classification; 20.8 Epilogue; Notation; Bibliography. English. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Linear. bisacsh Lie algebras fast has work: III Completion of the classification Simple Lie algebras over fields of positive characteristic (Text) https://id.oclc.org/worldcat/entity/E39PCGYxq4d8XQhpfHhGvxYCcd https://id.oclc.org/worldcat/ontology/hasWork Print version: Strade, Helmut, 1942- Simple Lie algebras over fields of positive characteristic. New York : Walter de Gruyter, 2004-<2013-> 3110142112 (DLC) 2004043901 (OCoLC)54460444 De Gruyter expositions in mathematics ; 57. 0938-6572 http://id.loc.gov/authorities/names/n90653843 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=544006 Volltext |
spellingShingle | Strade, Helmut, 1942- Simple Lie algebras over fields of positive characteristic. De Gruyter expositions in mathematics ; 19 Solving the case when all T-roots are solvable19.1 2-sections revisited; 19.2 The case when TR(L) = 3; 19.3 Solvable sections; 19.4 Conclusion; 20 Attacking the general case; 20.1 Optimal tori; 20.2 Root spaces in 2-sections; 20.3 The distinguished subalgebra Q(L, T); 20.4 Pushing the classical case; 20.5 The filtration defined by Q(L, T); 20.6 Determining G(L, T); 20.7 Completing the classification; 20.8 Epilogue; Notation; Bibliography. Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Linear. bisacsh Lie algebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85076782 |
title | Simple Lie algebras over fields of positive characteristic. |
title_alt | Completion of the classification |
title_auth | Simple Lie algebras over fields of positive characteristic. |
title_exact_search | Simple Lie algebras over fields of positive characteristic. |
title_full | Simple Lie algebras over fields of positive characteristic. III, Completion of the classification / by Helmut Strade. |
title_fullStr | Simple Lie algebras over fields of positive characteristic. III, Completion of the classification / by Helmut Strade. |
title_full_unstemmed | Simple Lie algebras over fields of positive characteristic. III, Completion of the classification / by Helmut Strade. |
title_short | Simple Lie algebras over fields of positive characteristic. |
title_sort | simple lie algebras over fields of positive characteristic completion of the classification |
topic | Lie algebras. http://id.loc.gov/authorities/subjects/sh85076782 Algèbres de Lie. MATHEMATICS Algebra Linear. bisacsh Lie algebras fast |
topic_facet | Lie algebras. Algèbres de Lie. MATHEMATICS Algebra Linear. Lie algebras |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=544006 |
work_keys_str_mv | AT stradehelmut simpleliealgebrasoverfieldsofpositivecharacteristiciii AT stradehelmut completionoftheclassification |