Solitons, nonlinear evolution equations and inverse scattering /:
Solitons have been of considerable interest to mathematicians since their discovery by Kruskal and Zabusky. This book brings together several aspects of soliton theory currently only available in research papers. Emphasis is given to the multi-dimensional problems arising and includes inverse scatte...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1991.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
149. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Solitons have been of considerable interest to mathematicians since their discovery by Kruskal and Zabusky. This book brings together several aspects of soliton theory currently only available in research papers. Emphasis is given to the multi-dimensional problems arising and includes inverse scattering in multi-dimensions, integrable nonlinear evolution equations in multi-dimensions and the ∂ method. Thus, this book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory. |
Beschreibung: | 1 online resource (516 pages) : illustrations. |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781107361614 1107361613 9780511623998 0511623992 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn833139674 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130328s1991 enkaf ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d UAB |d OCLCQ |d VTS |d REC |d STF |d M8D |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 708567384 | ||
020 | |a 9781107361614 |q (electronic bk.) | ||
020 | |a 1107361613 |q (electronic bk.) | ||
020 | |a 9780511623998 |q (e-book) | ||
020 | |a 0511623992 |q (e-book) | ||
020 | |z 0521387302 | ||
020 | |z 9780521387309 | ||
035 | |a (OCoLC)833139674 |z (OCoLC)708567384 | ||
050 | 4 | |a QA427 |b .A34 1991eb | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515.353 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ablowitz, Mark J. | |
245 | 1 | 0 | |a Solitons, nonlinear evolution equations and inverse scattering / |c M.J. Ablowitz and P.A. Clark. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1991. | ||
300 | |a 1 online resource (516 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 149 | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references. | ||
520 | |a Solitons have been of considerable interest to mathematicians since their discovery by Kruskal and Zabusky. This book brings together several aspects of soliton theory currently only available in research papers. Emphasis is given to the multi-dimensional problems arising and includes inverse scattering in multi-dimensions, integrable nonlinear evolution equations in multi-dimensions and the ∂ method. Thus, this book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory. | ||
505 | 0 | |a Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Historical remarks and applications; 1.2 Physical Derivation of the Kadomtsev-Petviashvili equation; 1.3 Travelling wave solutions of the Korteweg-de Vries equation; 1.4 The discovery of the soliton; 1.5 An infinite number of conserved quantities; 1.6 Fourier transforms; 1.7 The associated linear scattering problem and inverse scattering; 1.7.1 The inverse scattering method; 1.7.2 Reflectionless potentials; 1.8 Lax's generalization; 1.9 Linear scattering problems and associated nonlinear evolution equations | |
505 | 8 | |a 1.10 Generalizations of the I.S.T. in one spatial dimension1.11 Classes of integrable equations; 1.11.1 Ordinary differential equations; 1.11.2 Partial differential equations in one spatial dimension; 1.11.3 Differential-difference equations; 1.11.4 Singular integro-differential equations; 1.11.5 Partial differential equations in two spatial dimensions; 1.11.6 Multidimensional scattering equations; 1.11.7 Multidimensional differential geometric equations; 1.11.8 The Self-dual Yang-Mills equations; 2 Inverse Scattering for the Korteweg-de Vries Equation; 2.1 Introduction | |
505 | 8 | |a 2.2 The direct scattering problem2.3 The inverse scattering problem; 2.4 The time dependence; 2.5 Further remarks; 2.5.1 Soliton solutions; 2.5.2 Delta-function initial profile; 2.5.3 A general class of solutions of the Korteweg-de Vries equation; 2.5.4 The Gel'fand-Levitan-Marchenko integral equation; 2.6 Properties of completely integrable equations; 2.6.1 Solitons; 2.6.2 Infinite number of conservation laws; 2.6.3 Compatibility of linear operators; 2.6.4 Completely integrable Hamiltonian system and action-angle variables; 2.6.5 Bilinear representation; 2.6.6 Backland transformations | |
505 | 8 | |a 2.6.7 Painleve property2.6.8 Prolongation structure; 3 General Inverse Scattering in One Dimension; 3.1 Inverse scattering and Riemann-Hilbert problems for N x N matrix systems; 3.1.1 The direct and inverse scattering problems: 2nd order case; 3.1.2 The direct and inverse scattering problems: iVth order case; 3.1.3 The time dependence; 3.1.4 Hamiltonian system and action-angle variables for the nonlinear Schrodinger equation; 3.1.5 Riemann-Hilbert problems for iVth order Sturm-Liouville scattering problems; 3.2 Riemann-Hilbert problems for discrete scattering problems | |
505 | 8 | |a 3.2.1 Differential-difference equations: discrete Schrodinger scattering problem3.2.2 Differential-difference equations: discrete 2 x 2 scattering problem; 3.2.3 Partial-difference equations; 3.3 Homoclinic structure and numerically induced chaos for the nonlinear Schrodinger equation; 3.3.1 Introduction; 3.3.2 A linearized stability analysis; 3.3.3 Hirota's method for the single homoclinic orbit; 3.3.4 Combination homoclinic orbits; 3.3.5 Numerical homoclinic instability; 3.3.6 Duffmg's equations and Mel'nikov analysis; 3.4 Cellular Automata | |
650 | 0 | |a Solitons. |0 http://id.loc.gov/authorities/subjects/sh85124672 | |
650 | 0 | |a Evolution equations, Nonlinear. |0 http://id.loc.gov/authorities/subjects/sh85046037 | |
650 | 0 | |a Inverse scattering transform. |0 http://id.loc.gov/authorities/subjects/sh85067686 | |
650 | 6 | |a Solitons. | |
650 | 6 | |a Équations d'évolution non linéaires. | |
650 | 6 | |a Problème inverse de diffusion. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Evolution equations, Nonlinear |2 fast | |
650 | 7 | |a Inverse scattering transform |2 fast | |
650 | 7 | |a Solitons |2 fast | |
700 | 1 | |a Clark, P. A. | |
758 | |i has work: |a Solitons, nonlinear evolution equations and inverse scattering (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGqfp4GKKxMXhdccDFkcrq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ablowitz, Mark J. |t Solitons, nonlinear evolution equations and inverse scattering. |d Cambridge ; New York : Cambridge University Press, 1991 |z 9780521387309 |w (DLC) 92159759 |w (OCoLC)70410450 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 149. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551359 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10446072 | ||
938 | |a EBSCOhost |b EBSC |n 551359 | ||
938 | |a YBP Library Services |b YANK |n 10374339 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn833139674 |
---|---|
_version_ | 1816882226626822144 |
adam_text | |
any_adam_object | |
author | Ablowitz, Mark J. |
author2 | Clark, P. A. |
author2_role | |
author2_variant | p a c pa pac |
author_facet | Ablowitz, Mark J. Clark, P. A. |
author_role | |
author_sort | Ablowitz, Mark J. |
author_variant | m j a mj mja |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA427 |
callnumber-raw | QA427 .A34 1991eb |
callnumber-search | QA427 .A34 1991eb |
callnumber-sort | QA 3427 A34 41991EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Historical remarks and applications; 1.2 Physical Derivation of the Kadomtsev-Petviashvili equation; 1.3 Travelling wave solutions of the Korteweg-de Vries equation; 1.4 The discovery of the soliton; 1.5 An infinite number of conserved quantities; 1.6 Fourier transforms; 1.7 The associated linear scattering problem and inverse scattering; 1.7.1 The inverse scattering method; 1.7.2 Reflectionless potentials; 1.8 Lax's generalization; 1.9 Linear scattering problems and associated nonlinear evolution equations 1.10 Generalizations of the I.S.T. in one spatial dimension1.11 Classes of integrable equations; 1.11.1 Ordinary differential equations; 1.11.2 Partial differential equations in one spatial dimension; 1.11.3 Differential-difference equations; 1.11.4 Singular integro-differential equations; 1.11.5 Partial differential equations in two spatial dimensions; 1.11.6 Multidimensional scattering equations; 1.11.7 Multidimensional differential geometric equations; 1.11.8 The Self-dual Yang-Mills equations; 2 Inverse Scattering for the Korteweg-de Vries Equation; 2.1 Introduction 2.2 The direct scattering problem2.3 The inverse scattering problem; 2.4 The time dependence; 2.5 Further remarks; 2.5.1 Soliton solutions; 2.5.2 Delta-function initial profile; 2.5.3 A general class of solutions of the Korteweg-de Vries equation; 2.5.4 The Gel'fand-Levitan-Marchenko integral equation; 2.6 Properties of completely integrable equations; 2.6.1 Solitons; 2.6.2 Infinite number of conservation laws; 2.6.3 Compatibility of linear operators; 2.6.4 Completely integrable Hamiltonian system and action-angle variables; 2.6.5 Bilinear representation; 2.6.6 Backland transformations 2.6.7 Painleve property2.6.8 Prolongation structure; 3 General Inverse Scattering in One Dimension; 3.1 Inverse scattering and Riemann-Hilbert problems for N x N matrix systems; 3.1.1 The direct and inverse scattering problems: 2nd order case; 3.1.2 The direct and inverse scattering problems: iVth order case; 3.1.3 The time dependence; 3.1.4 Hamiltonian system and action-angle variables for the nonlinear Schrodinger equation; 3.1.5 Riemann-Hilbert problems for iVth order Sturm-Liouville scattering problems; 3.2 Riemann-Hilbert problems for discrete scattering problems 3.2.1 Differential-difference equations: discrete Schrodinger scattering problem3.2.2 Differential-difference equations: discrete 2 x 2 scattering problem; 3.2.3 Partial-difference equations; 3.3 Homoclinic structure and numerically induced chaos for the nonlinear Schrodinger equation; 3.3.1 Introduction; 3.3.2 A linearized stability analysis; 3.3.3 Hirota's method for the single homoclinic orbit; 3.3.4 Combination homoclinic orbits; 3.3.5 Numerical homoclinic instability; 3.3.6 Duffmg's equations and Mel'nikov analysis; 3.4 Cellular Automata |
ctrlnum | (OCoLC)833139674 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06316cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn833139674</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130328s1991 enkaf ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708567384</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107361614</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107361613</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511623998</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511623992</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521387302</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521387309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)833139674</subfield><subfield code="z">(OCoLC)708567384</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA427</subfield><subfield code="b">.A34 1991eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ablowitz, Mark J.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solitons, nonlinear evolution equations and inverse scattering /</subfield><subfield code="c">M.J. Ablowitz and P.A. Clark.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1991.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (516 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">149</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Solitons have been of considerable interest to mathematicians since their discovery by Kruskal and Zabusky. This book brings together several aspects of soliton theory currently only available in research papers. Emphasis is given to the multi-dimensional problems arising and includes inverse scattering in multi-dimensions, integrable nonlinear evolution equations in multi-dimensions and the ∂ method. Thus, this book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Historical remarks and applications; 1.2 Physical Derivation of the Kadomtsev-Petviashvili equation; 1.3 Travelling wave solutions of the Korteweg-de Vries equation; 1.4 The discovery of the soliton; 1.5 An infinite number of conserved quantities; 1.6 Fourier transforms; 1.7 The associated linear scattering problem and inverse scattering; 1.7.1 The inverse scattering method; 1.7.2 Reflectionless potentials; 1.8 Lax's generalization; 1.9 Linear scattering problems and associated nonlinear evolution equations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.10 Generalizations of the I.S.T. in one spatial dimension1.11 Classes of integrable equations; 1.11.1 Ordinary differential equations; 1.11.2 Partial differential equations in one spatial dimension; 1.11.3 Differential-difference equations; 1.11.4 Singular integro-differential equations; 1.11.5 Partial differential equations in two spatial dimensions; 1.11.6 Multidimensional scattering equations; 1.11.7 Multidimensional differential geometric equations; 1.11.8 The Self-dual Yang-Mills equations; 2 Inverse Scattering for the Korteweg-de Vries Equation; 2.1 Introduction</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.2 The direct scattering problem2.3 The inverse scattering problem; 2.4 The time dependence; 2.5 Further remarks; 2.5.1 Soliton solutions; 2.5.2 Delta-function initial profile; 2.5.3 A general class of solutions of the Korteweg-de Vries equation; 2.5.4 The Gel'fand-Levitan-Marchenko integral equation; 2.6 Properties of completely integrable equations; 2.6.1 Solitons; 2.6.2 Infinite number of conservation laws; 2.6.3 Compatibility of linear operators; 2.6.4 Completely integrable Hamiltonian system and action-angle variables; 2.6.5 Bilinear representation; 2.6.6 Backland transformations</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.6.7 Painleve property2.6.8 Prolongation structure; 3 General Inverse Scattering in One Dimension; 3.1 Inverse scattering and Riemann-Hilbert problems for N x N matrix systems; 3.1.1 The direct and inverse scattering problems: 2nd order case; 3.1.2 The direct and inverse scattering problems: iVth order case; 3.1.3 The time dependence; 3.1.4 Hamiltonian system and action-angle variables for the nonlinear Schrodinger equation; 3.1.5 Riemann-Hilbert problems for iVth order Sturm-Liouville scattering problems; 3.2 Riemann-Hilbert problems for discrete scattering problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2.1 Differential-difference equations: discrete Schrodinger scattering problem3.2.2 Differential-difference equations: discrete 2 x 2 scattering problem; 3.2.3 Partial-difference equations; 3.3 Homoclinic structure and numerically induced chaos for the nonlinear Schrodinger equation; 3.3.1 Introduction; 3.3.2 A linearized stability analysis; 3.3.3 Hirota's method for the single homoclinic orbit; 3.3.4 Combination homoclinic orbits; 3.3.5 Numerical homoclinic instability; 3.3.6 Duffmg's equations and Mel'nikov analysis; 3.4 Cellular Automata</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Solitons.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85124672</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Evolution equations, Nonlinear.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85046037</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Inverse scattering transform.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067686</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Solitons.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations d'évolution non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Problème inverse de diffusion.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evolution equations, Nonlinear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inverse scattering transform</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Solitons</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clark, P. A.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Solitons, nonlinear evolution equations and inverse scattering (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGqfp4GKKxMXhdccDFkcrq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ablowitz, Mark J.</subfield><subfield code="t">Solitons, nonlinear evolution equations and inverse scattering.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1991</subfield><subfield code="z">9780521387309</subfield><subfield code="w">(DLC) 92159759</subfield><subfield code="w">(OCoLC)70410450</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">149.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551359</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10446072</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">551359</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10374339</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn833139674 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:15Z |
institution | BVB |
isbn | 9781107361614 1107361613 9780511623998 0511623992 |
language | English |
oclc_num | 833139674 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (516 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 1991 |
publishDateSearch | 1991 |
publishDateSort | 1991 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Ablowitz, Mark J. Solitons, nonlinear evolution equations and inverse scattering / M.J. Ablowitz and P.A. Clark. Cambridge ; New York : Cambridge University Press, 1991. 1 online resource (516 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 149 Print version record. Includes bibliographical references. Solitons have been of considerable interest to mathematicians since their discovery by Kruskal and Zabusky. This book brings together several aspects of soliton theory currently only available in research papers. Emphasis is given to the multi-dimensional problems arising and includes inverse scattering in multi-dimensions, integrable nonlinear evolution equations in multi-dimensions and the ∂ method. Thus, this book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory. Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Historical remarks and applications; 1.2 Physical Derivation of the Kadomtsev-Petviashvili equation; 1.3 Travelling wave solutions of the Korteweg-de Vries equation; 1.4 The discovery of the soliton; 1.5 An infinite number of conserved quantities; 1.6 Fourier transforms; 1.7 The associated linear scattering problem and inverse scattering; 1.7.1 The inverse scattering method; 1.7.2 Reflectionless potentials; 1.8 Lax's generalization; 1.9 Linear scattering problems and associated nonlinear evolution equations 1.10 Generalizations of the I.S.T. in one spatial dimension1.11 Classes of integrable equations; 1.11.1 Ordinary differential equations; 1.11.2 Partial differential equations in one spatial dimension; 1.11.3 Differential-difference equations; 1.11.4 Singular integro-differential equations; 1.11.5 Partial differential equations in two spatial dimensions; 1.11.6 Multidimensional scattering equations; 1.11.7 Multidimensional differential geometric equations; 1.11.8 The Self-dual Yang-Mills equations; 2 Inverse Scattering for the Korteweg-de Vries Equation; 2.1 Introduction 2.2 The direct scattering problem2.3 The inverse scattering problem; 2.4 The time dependence; 2.5 Further remarks; 2.5.1 Soliton solutions; 2.5.2 Delta-function initial profile; 2.5.3 A general class of solutions of the Korteweg-de Vries equation; 2.5.4 The Gel'fand-Levitan-Marchenko integral equation; 2.6 Properties of completely integrable equations; 2.6.1 Solitons; 2.6.2 Infinite number of conservation laws; 2.6.3 Compatibility of linear operators; 2.6.4 Completely integrable Hamiltonian system and action-angle variables; 2.6.5 Bilinear representation; 2.6.6 Backland transformations 2.6.7 Painleve property2.6.8 Prolongation structure; 3 General Inverse Scattering in One Dimension; 3.1 Inverse scattering and Riemann-Hilbert problems for N x N matrix systems; 3.1.1 The direct and inverse scattering problems: 2nd order case; 3.1.2 The direct and inverse scattering problems: iVth order case; 3.1.3 The time dependence; 3.1.4 Hamiltonian system and action-angle variables for the nonlinear Schrodinger equation; 3.1.5 Riemann-Hilbert problems for iVth order Sturm-Liouville scattering problems; 3.2 Riemann-Hilbert problems for discrete scattering problems 3.2.1 Differential-difference equations: discrete Schrodinger scattering problem3.2.2 Differential-difference equations: discrete 2 x 2 scattering problem; 3.2.3 Partial-difference equations; 3.3 Homoclinic structure and numerically induced chaos for the nonlinear Schrodinger equation; 3.3.1 Introduction; 3.3.2 A linearized stability analysis; 3.3.3 Hirota's method for the single homoclinic orbit; 3.3.4 Combination homoclinic orbits; 3.3.5 Numerical homoclinic instability; 3.3.6 Duffmg's equations and Mel'nikov analysis; 3.4 Cellular Automata Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Evolution equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85046037 Inverse scattering transform. http://id.loc.gov/authorities/subjects/sh85067686 Solitons. Équations d'évolution non linéaires. Problème inverse de diffusion. MATHEMATICS Differential Equations Partial. bisacsh Evolution equations, Nonlinear fast Inverse scattering transform fast Solitons fast Clark, P. A. has work: Solitons, nonlinear evolution equations and inverse scattering (Text) https://id.oclc.org/worldcat/entity/E39PCGqfp4GKKxMXhdccDFkcrq https://id.oclc.org/worldcat/ontology/hasWork Print version: Ablowitz, Mark J. Solitons, nonlinear evolution equations and inverse scattering. Cambridge ; New York : Cambridge University Press, 1991 9780521387309 (DLC) 92159759 (OCoLC)70410450 London Mathematical Society lecture note series ; 149. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551359 Volltext |
spellingShingle | Ablowitz, Mark J. Solitons, nonlinear evolution equations and inverse scattering / London Mathematical Society lecture note series ; Cover; Title; Copyright; Contents; 1 Introduction; 1.1 Historical remarks and applications; 1.2 Physical Derivation of the Kadomtsev-Petviashvili equation; 1.3 Travelling wave solutions of the Korteweg-de Vries equation; 1.4 The discovery of the soliton; 1.5 An infinite number of conserved quantities; 1.6 Fourier transforms; 1.7 The associated linear scattering problem and inverse scattering; 1.7.1 The inverse scattering method; 1.7.2 Reflectionless potentials; 1.8 Lax's generalization; 1.9 Linear scattering problems and associated nonlinear evolution equations 1.10 Generalizations of the I.S.T. in one spatial dimension1.11 Classes of integrable equations; 1.11.1 Ordinary differential equations; 1.11.2 Partial differential equations in one spatial dimension; 1.11.3 Differential-difference equations; 1.11.4 Singular integro-differential equations; 1.11.5 Partial differential equations in two spatial dimensions; 1.11.6 Multidimensional scattering equations; 1.11.7 Multidimensional differential geometric equations; 1.11.8 The Self-dual Yang-Mills equations; 2 Inverse Scattering for the Korteweg-de Vries Equation; 2.1 Introduction 2.2 The direct scattering problem2.3 The inverse scattering problem; 2.4 The time dependence; 2.5 Further remarks; 2.5.1 Soliton solutions; 2.5.2 Delta-function initial profile; 2.5.3 A general class of solutions of the Korteweg-de Vries equation; 2.5.4 The Gel'fand-Levitan-Marchenko integral equation; 2.6 Properties of completely integrable equations; 2.6.1 Solitons; 2.6.2 Infinite number of conservation laws; 2.6.3 Compatibility of linear operators; 2.6.4 Completely integrable Hamiltonian system and action-angle variables; 2.6.5 Bilinear representation; 2.6.6 Backland transformations 2.6.7 Painleve property2.6.8 Prolongation structure; 3 General Inverse Scattering in One Dimension; 3.1 Inverse scattering and Riemann-Hilbert problems for N x N matrix systems; 3.1.1 The direct and inverse scattering problems: 2nd order case; 3.1.2 The direct and inverse scattering problems: iVth order case; 3.1.3 The time dependence; 3.1.4 Hamiltonian system and action-angle variables for the nonlinear Schrodinger equation; 3.1.5 Riemann-Hilbert problems for iVth order Sturm-Liouville scattering problems; 3.2 Riemann-Hilbert problems for discrete scattering problems 3.2.1 Differential-difference equations: discrete Schrodinger scattering problem3.2.2 Differential-difference equations: discrete 2 x 2 scattering problem; 3.2.3 Partial-difference equations; 3.3 Homoclinic structure and numerically induced chaos for the nonlinear Schrodinger equation; 3.3.1 Introduction; 3.3.2 A linearized stability analysis; 3.3.3 Hirota's method for the single homoclinic orbit; 3.3.4 Combination homoclinic orbits; 3.3.5 Numerical homoclinic instability; 3.3.6 Duffmg's equations and Mel'nikov analysis; 3.4 Cellular Automata Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Evolution equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85046037 Inverse scattering transform. http://id.loc.gov/authorities/subjects/sh85067686 Solitons. Équations d'évolution non linéaires. Problème inverse de diffusion. MATHEMATICS Differential Equations Partial. bisacsh Evolution equations, Nonlinear fast Inverse scattering transform fast Solitons fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85124672 http://id.loc.gov/authorities/subjects/sh85046037 http://id.loc.gov/authorities/subjects/sh85067686 |
title | Solitons, nonlinear evolution equations and inverse scattering / |
title_auth | Solitons, nonlinear evolution equations and inverse scattering / |
title_exact_search | Solitons, nonlinear evolution equations and inverse scattering / |
title_full | Solitons, nonlinear evolution equations and inverse scattering / M.J. Ablowitz and P.A. Clark. |
title_fullStr | Solitons, nonlinear evolution equations and inverse scattering / M.J. Ablowitz and P.A. Clark. |
title_full_unstemmed | Solitons, nonlinear evolution equations and inverse scattering / M.J. Ablowitz and P.A. Clark. |
title_short | Solitons, nonlinear evolution equations and inverse scattering / |
title_sort | solitons nonlinear evolution equations and inverse scattering |
topic | Solitons. http://id.loc.gov/authorities/subjects/sh85124672 Evolution equations, Nonlinear. http://id.loc.gov/authorities/subjects/sh85046037 Inverse scattering transform. http://id.loc.gov/authorities/subjects/sh85067686 Solitons. Équations d'évolution non linéaires. Problème inverse de diffusion. MATHEMATICS Differential Equations Partial. bisacsh Evolution equations, Nonlinear fast Inverse scattering transform fast Solitons fast |
topic_facet | Solitons. Evolution equations, Nonlinear. Inverse scattering transform. Équations d'évolution non linéaires. Problème inverse de diffusion. MATHEMATICS Differential Equations Partial. Evolution equations, Nonlinear Inverse scattering transform Solitons |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551359 |
work_keys_str_mv | AT ablowitzmarkj solitonsnonlinearevolutionequationsandinversescattering AT clarkpa solitonsnonlinearevolutionequationsandinversescattering |