Advances in mathematics research.: Vol. 17 /
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Nova Science Publishers, Inc.,
©2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Title from PDF title page (viewed March 27, 2013). |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781621008828 1621008827 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn832719618 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130327s2012 nyu ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d AU@ |d STF |d OCLCQ |d K6U |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9781621008828 |q (electronic bk.) | ||
020 | |a 1621008827 |q (electronic bk.) | ||
035 | |a (OCoLC)832719618 | ||
050 | 4 | |a QA11.2 |b .A34 2012eb | |
072 | 7 | |a MAT |x 039000 |2 bisacsh | |
072 | 7 | |a MAT |x 023000 |2 bisacsh | |
072 | 7 | |a MAT |x 026000 |2 bisacsh | |
082 | 7 | |a 510 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Advances in mathematics research. |n Vol. 17 / |c Albert R. Baswell, editor. |
260 | |a New York : |b Nova Science Publishers, Inc., |c ©2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
500 | |a Title from PDF title page (viewed March 27, 2013). | ||
505 | 0 | |a ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; Contents; Preface; NONLINEAR EVOLUTION EQUATIONS IN VIEW OF THE EXP-FUNCTION METHOD AND ITS GENERALIZATION; Abstract; 1. Introduction; 2. TheExp-FunctionMethod; 3. Applications; 3.1. NonlinearKdVEquation; 3.2. Burgers'Equation; 3.3. TheCombinedKdV-mKdVEquation; 3.4. GeneralizedKlein-GordonEquation; 4. EvolutionEquationswithNonlinearTermsofAnyOrders; 4.1. MethodofSolution; 4.2. ExactSolutionsforGeneralizedBurgersEquationwithVariableCoefficients; 4.3. ExactSolutionsforGeneralizedKdVEquationwithVariableCoefficients. | |
505 | 8 | |a 5. The -FunctionMethod5.1. ApplicationtoBurgersEquation; 5.2. GeneralFormulaforthe -FunctionMethod; 5.3. ApplicationtoNanoBoundaryLayerProblems; 5.3.1. GeneralExactSolutionsvia -FunctionMethod; 5.3.2. ExactSolutionsSatisfytheBoundaryConditions; 6. Conclusion; References; CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: GENERALIZED TARSKI CONGRUENCE SYSTEMS; Abstract; 1. Introduction; 2. SententialLogicsand -Institutions; 3. CategoryCongruences; 4. EquivalenceSystems; 5. CongruenceSystems; 6. LogicalandTarskiCongruenceSystems; 7. DiscussionandOpenProblems; Acknowledgements; References. | |
505 | 8 | |a PARALLELIZATION OF NEURAL NETWORK BUILDING AND TRAINING: AN ORIGINAL DECOMPOSITION METHODAbstract; 1. NeuralNetworkDescription; 1.1. Topology; 1.2. IncrementalLearningApproaches; 1.2.1. ClassicalAlgorithms; 1.2.2. CascadeCorrelation; 1.2.3. AlgorithmProposedbyDunkinetal.; 1.3. DesignofaNewIncrementalLearningAlgorithm; 1.3.1.NetworkTopology; 1.3.2. LearningandHiddenLayerBuildingTogether; 2. DecompositionMethod; 2.1. QuantificationoftheComplexityofaLearningDomain; 2.2. TheURBDecompositionMethod; 2.3. OverlappingbetweenSub-domains; 2.4. WorkontheDataset:ExtractionofaRepresentativeSetfromMassiveData. | |
505 | 8 | |a 3. ValidationoftheTrainingProcess3.1. TheParallelEnvironment; 3.2. ASimpleCase; 3.3. ARealWorldApplication:TheRadiotherapyContext; 3.3.1. RadiotherapyContext:DatasetBuilding; 3.3.2. ValidationProcess; 4. PerformanceEnhancementoftheNeuralNetworkExploitation; 4.1. AcceleratingtheDoseDepositEvaluations; 4.2. Results; 5. Conclusion; References; OVER-DETERMINED BOUNDARY VALUE PROBLEMS FOR LINEAR EQUATIONS OF ELASTODYNAMICS AND THEIR APPLICATIONS TO ELASTIC WAVE DIFFRACTION THEORY; Abstract; 1. Introduction; 2. AxiomaticBasisofDynamicElasticityTheory; 3. TheOver-DeterminedCauchyProblemintheSemi-Plane. | |
505 | 8 | |a 4. TheOver-DeterminedCauchyProbleminSemi-Space5. TheBasicBoundaryValueProblemsinSemi-SpaceandinSemi-Plane; 6. DefectsontheBoundaryofElasticSemi-Plane; 7. TwoElasticBodies. TheJumpProblem; 8. TheDiffractionofElasticWaveontheCrack; References; TWO FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY USING SIMPLICIAL MESHES; Abstract; 1. Introduction; 2. TheBoundaryValueProblemofLinearElasticity; 2.1. StandardWeakFormulation; 2.2. MixedFormulation; 3. FiniteElementDiscretizationoftheNon-SymmetricSystem; 4. SymmetricApproachBasedonaThree-FieldFormulation. | |
650 | 0 | |a Mathematics |x Research. |0 http://id.loc.gov/authorities/subjects/sh85082156 | |
650 | 7 | |a MATHEMATICS |x Essays. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Pre-Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Reference. |2 bisacsh | |
650 | 7 | |a Mathematics |x Research |2 fast | |
700 | 1 | |a Baswell, Albert R. | |
758 | |i has work: |a Advances in mathematics research Volume 17 (Text) |1 https://id.oclc.org/worldcat/entity/E39PCYCFrV9pDKdDfytXhCrVP3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=535144 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 535144 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn832719618 |
---|---|
_version_ | 1816882226547130369 |
adam_text | |
any_adam_object | |
author2 | Baswell, Albert R. |
author2_role | |
author2_variant | a r b ar arb |
author_facet | Baswell, Albert R. |
author_sort | Baswell, Albert R. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA11 |
callnumber-raw | QA11.2 .A34 2012eb |
callnumber-search | QA11.2 .A34 2012eb |
callnumber-sort | QA 211.2 A34 42012EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; Contents; Preface; NONLINEAR EVOLUTION EQUATIONS IN VIEW OF THE EXP-FUNCTION METHOD AND ITS GENERALIZATION; Abstract; 1. Introduction; 2. TheExp-FunctionMethod; 3. Applications; 3.1. NonlinearKdVEquation; 3.2. Burgers'Equation; 3.3. TheCombinedKdV-mKdVEquation; 3.4. GeneralizedKlein-GordonEquation; 4. EvolutionEquationswithNonlinearTermsofAnyOrders; 4.1. MethodofSolution; 4.2. ExactSolutionsforGeneralizedBurgersEquationwithVariableCoefficients; 4.3. ExactSolutionsforGeneralizedKdVEquationwithVariableCoefficients. 5. The -FunctionMethod5.1. ApplicationtoBurgersEquation; 5.2. GeneralFormulaforthe -FunctionMethod; 5.3. ApplicationtoNanoBoundaryLayerProblems; 5.3.1. GeneralExactSolutionsvia -FunctionMethod; 5.3.2. ExactSolutionsSatisfytheBoundaryConditions; 6. Conclusion; References; CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: GENERALIZED TARSKI CONGRUENCE SYSTEMS; Abstract; 1. Introduction; 2. SententialLogicsand -Institutions; 3. CategoryCongruences; 4. EquivalenceSystems; 5. CongruenceSystems; 6. LogicalandTarskiCongruenceSystems; 7. DiscussionandOpenProblems; Acknowledgements; References. PARALLELIZATION OF NEURAL NETWORK BUILDING AND TRAINING: AN ORIGINAL DECOMPOSITION METHODAbstract; 1. NeuralNetworkDescription; 1.1. Topology; 1.2. IncrementalLearningApproaches; 1.2.1. ClassicalAlgorithms; 1.2.2. CascadeCorrelation; 1.2.3. AlgorithmProposedbyDunkinetal.; 1.3. DesignofaNewIncrementalLearningAlgorithm; 1.3.1.NetworkTopology; 1.3.2. LearningandHiddenLayerBuildingTogether; 2. DecompositionMethod; 2.1. QuantificationoftheComplexityofaLearningDomain; 2.2. TheURBDecompositionMethod; 2.3. OverlappingbetweenSub-domains; 2.4. WorkontheDataset:ExtractionofaRepresentativeSetfromMassiveData. 3. ValidationoftheTrainingProcess3.1. TheParallelEnvironment; 3.2. ASimpleCase; 3.3. ARealWorldApplication:TheRadiotherapyContext; 3.3.1. RadiotherapyContext:DatasetBuilding; 3.3.2. ValidationProcess; 4. PerformanceEnhancementoftheNeuralNetworkExploitation; 4.1. AcceleratingtheDoseDepositEvaluations; 4.2. Results; 5. Conclusion; References; OVER-DETERMINED BOUNDARY VALUE PROBLEMS FOR LINEAR EQUATIONS OF ELASTODYNAMICS AND THEIR APPLICATIONS TO ELASTIC WAVE DIFFRACTION THEORY; Abstract; 1. Introduction; 2. AxiomaticBasisofDynamicElasticityTheory; 3. TheOver-DeterminedCauchyProblemintheSemi-Plane. 4. TheOver-DeterminedCauchyProbleminSemi-Space5. TheBasicBoundaryValueProblemsinSemi-SpaceandinSemi-Plane; 6. DefectsontheBoundaryofElasticSemi-Plane; 7. TwoElasticBodies. TheJumpProblem; 8. TheDiffractionofElasticWaveontheCrack; References; TWO FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY USING SIMPLICIAL MESHES; Abstract; 1. Introduction; 2. TheBoundaryValueProblemofLinearElasticity; 2.1. StandardWeakFormulation; 2.2. MixedFormulation; 3. FiniteElementDiscretizationoftheNon-SymmetricSystem; 4. SymmetricApproachBasedonaThree-FieldFormulation. |
ctrlnum | (OCoLC)832719618 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04813cam a2200493 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn832719618</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130327s2012 nyu ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781621008828</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1621008827</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)832719618</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA11.2</subfield><subfield code="b">.A34 2012eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">039000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">023000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Advances in mathematics research.</subfield><subfield code="n">Vol. 17 /</subfield><subfield code="c">Albert R. Baswell, editor.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Nova Science Publishers, Inc.,</subfield><subfield code="c">©2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed March 27, 2013).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; Contents; Preface; NONLINEAR EVOLUTION EQUATIONS IN VIEW OF THE EXP-FUNCTION METHOD AND ITS GENERALIZATION; Abstract; 1. Introduction; 2. TheExp-FunctionMethod; 3. Applications; 3.1. NonlinearKdVEquation; 3.2. Burgers'Equation; 3.3. TheCombinedKdV-mKdVEquation; 3.4. GeneralizedKlein-GordonEquation; 4. EvolutionEquationswithNonlinearTermsofAnyOrders; 4.1. MethodofSolution; 4.2. ExactSolutionsforGeneralizedBurgersEquationwithVariableCoefficients; 4.3. ExactSolutionsforGeneralizedKdVEquationwithVariableCoefficients.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. The -FunctionMethod5.1. ApplicationtoBurgersEquation; 5.2. GeneralFormulaforthe -FunctionMethod; 5.3. ApplicationtoNanoBoundaryLayerProblems; 5.3.1. GeneralExactSolutionsvia -FunctionMethod; 5.3.2. ExactSolutionsSatisfytheBoundaryConditions; 6. Conclusion; References; CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: GENERALIZED TARSKI CONGRUENCE SYSTEMS; Abstract; 1. Introduction; 2. SententialLogicsand -Institutions; 3. CategoryCongruences; 4. EquivalenceSystems; 5. CongruenceSystems; 6. LogicalandTarskiCongruenceSystems; 7. DiscussionandOpenProblems; Acknowledgements; References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">PARALLELIZATION OF NEURAL NETWORK BUILDING AND TRAINING: AN ORIGINAL DECOMPOSITION METHODAbstract; 1. NeuralNetworkDescription; 1.1. Topology; 1.2. IncrementalLearningApproaches; 1.2.1. ClassicalAlgorithms; 1.2.2. CascadeCorrelation; 1.2.3. AlgorithmProposedbyDunkinetal.; 1.3. DesignofaNewIncrementalLearningAlgorithm; 1.3.1.NetworkTopology; 1.3.2. LearningandHiddenLayerBuildingTogether; 2. DecompositionMethod; 2.1. QuantificationoftheComplexityofaLearningDomain; 2.2. TheURBDecompositionMethod; 2.3. OverlappingbetweenSub-domains; 2.4. WorkontheDataset:ExtractionofaRepresentativeSetfromMassiveData.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. ValidationoftheTrainingProcess3.1. TheParallelEnvironment; 3.2. ASimpleCase; 3.3. ARealWorldApplication:TheRadiotherapyContext; 3.3.1. RadiotherapyContext:DatasetBuilding; 3.3.2. ValidationProcess; 4. PerformanceEnhancementoftheNeuralNetworkExploitation; 4.1. AcceleratingtheDoseDepositEvaluations; 4.2. Results; 5. Conclusion; References; OVER-DETERMINED BOUNDARY VALUE PROBLEMS FOR LINEAR EQUATIONS OF ELASTODYNAMICS AND THEIR APPLICATIONS TO ELASTIC WAVE DIFFRACTION THEORY; Abstract; 1. Introduction; 2. AxiomaticBasisofDynamicElasticityTheory; 3. TheOver-DeterminedCauchyProblemintheSemi-Plane.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. TheOver-DeterminedCauchyProbleminSemi-Space5. TheBasicBoundaryValueProblemsinSemi-SpaceandinSemi-Plane; 6. DefectsontheBoundaryofElasticSemi-Plane; 7. TwoElasticBodies. TheJumpProblem; 8. TheDiffractionofElasticWaveontheCrack; References; TWO FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY USING SIMPLICIAL MESHES; Abstract; 1. Introduction; 2. TheBoundaryValueProblemofLinearElasticity; 2.1. StandardWeakFormulation; 2.2. MixedFormulation; 3. FiniteElementDiscretizationoftheNon-SymmetricSystem; 4. SymmetricApproachBasedonaThree-FieldFormulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematics</subfield><subfield code="x">Research.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082156</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Essays.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Pre-Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Reference.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="x">Research</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baswell, Albert R.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Advances in mathematics research Volume 17 (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCYCFrV9pDKdDfytXhCrVP3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=535144</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">535144</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn832719618 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:15Z |
institution | BVB |
isbn | 9781621008828 1621008827 |
language | English |
oclc_num | 832719618 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Nova Science Publishers, Inc., |
record_format | marc |
spelling | Advances in mathematics research. Vol. 17 / Albert R. Baswell, editor. New York : Nova Science Publishers, Inc., ©2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Title from PDF title page (viewed March 27, 2013). ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; Contents; Preface; NONLINEAR EVOLUTION EQUATIONS IN VIEW OF THE EXP-FUNCTION METHOD AND ITS GENERALIZATION; Abstract; 1. Introduction; 2. TheExp-FunctionMethod; 3. Applications; 3.1. NonlinearKdVEquation; 3.2. Burgers'Equation; 3.3. TheCombinedKdV-mKdVEquation; 3.4. GeneralizedKlein-GordonEquation; 4. EvolutionEquationswithNonlinearTermsofAnyOrders; 4.1. MethodofSolution; 4.2. ExactSolutionsforGeneralizedBurgersEquationwithVariableCoefficients; 4.3. ExactSolutionsforGeneralizedKdVEquationwithVariableCoefficients. 5. The -FunctionMethod5.1. ApplicationtoBurgersEquation; 5.2. GeneralFormulaforthe -FunctionMethod; 5.3. ApplicationtoNanoBoundaryLayerProblems; 5.3.1. GeneralExactSolutionsvia -FunctionMethod; 5.3.2. ExactSolutionsSatisfytheBoundaryConditions; 6. Conclusion; References; CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: GENERALIZED TARSKI CONGRUENCE SYSTEMS; Abstract; 1. Introduction; 2. SententialLogicsand -Institutions; 3. CategoryCongruences; 4. EquivalenceSystems; 5. CongruenceSystems; 6. LogicalandTarskiCongruenceSystems; 7. DiscussionandOpenProblems; Acknowledgements; References. PARALLELIZATION OF NEURAL NETWORK BUILDING AND TRAINING: AN ORIGINAL DECOMPOSITION METHODAbstract; 1. NeuralNetworkDescription; 1.1. Topology; 1.2. IncrementalLearningApproaches; 1.2.1. ClassicalAlgorithms; 1.2.2. CascadeCorrelation; 1.2.3. AlgorithmProposedbyDunkinetal.; 1.3. DesignofaNewIncrementalLearningAlgorithm; 1.3.1.NetworkTopology; 1.3.2. LearningandHiddenLayerBuildingTogether; 2. DecompositionMethod; 2.1. QuantificationoftheComplexityofaLearningDomain; 2.2. TheURBDecompositionMethod; 2.3. OverlappingbetweenSub-domains; 2.4. WorkontheDataset:ExtractionofaRepresentativeSetfromMassiveData. 3. ValidationoftheTrainingProcess3.1. TheParallelEnvironment; 3.2. ASimpleCase; 3.3. ARealWorldApplication:TheRadiotherapyContext; 3.3.1. RadiotherapyContext:DatasetBuilding; 3.3.2. ValidationProcess; 4. PerformanceEnhancementoftheNeuralNetworkExploitation; 4.1. AcceleratingtheDoseDepositEvaluations; 4.2. Results; 5. Conclusion; References; OVER-DETERMINED BOUNDARY VALUE PROBLEMS FOR LINEAR EQUATIONS OF ELASTODYNAMICS AND THEIR APPLICATIONS TO ELASTIC WAVE DIFFRACTION THEORY; Abstract; 1. Introduction; 2. AxiomaticBasisofDynamicElasticityTheory; 3. TheOver-DeterminedCauchyProblemintheSemi-Plane. 4. TheOver-DeterminedCauchyProbleminSemi-Space5. TheBasicBoundaryValueProblemsinSemi-SpaceandinSemi-Plane; 6. DefectsontheBoundaryofElasticSemi-Plane; 7. TwoElasticBodies. TheJumpProblem; 8. TheDiffractionofElasticWaveontheCrack; References; TWO FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY USING SIMPLICIAL MESHES; Abstract; 1. Introduction; 2. TheBoundaryValueProblemofLinearElasticity; 2.1. StandardWeakFormulation; 2.2. MixedFormulation; 3. FiniteElementDiscretizationoftheNon-SymmetricSystem; 4. SymmetricApproachBasedonaThree-FieldFormulation. Mathematics Research. http://id.loc.gov/authorities/subjects/sh85082156 MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Mathematics Research fast Baswell, Albert R. has work: Advances in mathematics research Volume 17 (Text) https://id.oclc.org/worldcat/entity/E39PCYCFrV9pDKdDfytXhCrVP3 https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=535144 Volltext |
spellingShingle | Advances in mathematics research. ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; ADVANCES IN MATHEMATICS RESEARCH VOLUME 17 ; Contents; Preface; NONLINEAR EVOLUTION EQUATIONS IN VIEW OF THE EXP-FUNCTION METHOD AND ITS GENERALIZATION; Abstract; 1. Introduction; 2. TheExp-FunctionMethod; 3. Applications; 3.1. NonlinearKdVEquation; 3.2. Burgers'Equation; 3.3. TheCombinedKdV-mKdVEquation; 3.4. GeneralizedKlein-GordonEquation; 4. EvolutionEquationswithNonlinearTermsofAnyOrders; 4.1. MethodofSolution; 4.2. ExactSolutionsforGeneralizedBurgersEquationwithVariableCoefficients; 4.3. ExactSolutionsforGeneralizedKdVEquationwithVariableCoefficients. 5. The -FunctionMethod5.1. ApplicationtoBurgersEquation; 5.2. GeneralFormulaforthe -FunctionMethod; 5.3. ApplicationtoNanoBoundaryLayerProblems; 5.3.1. GeneralExactSolutionsvia -FunctionMethod; 5.3.2. ExactSolutionsSatisfytheBoundaryConditions; 6. Conclusion; References; CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: GENERALIZED TARSKI CONGRUENCE SYSTEMS; Abstract; 1. Introduction; 2. SententialLogicsand -Institutions; 3. CategoryCongruences; 4. EquivalenceSystems; 5. CongruenceSystems; 6. LogicalandTarskiCongruenceSystems; 7. DiscussionandOpenProblems; Acknowledgements; References. PARALLELIZATION OF NEURAL NETWORK BUILDING AND TRAINING: AN ORIGINAL DECOMPOSITION METHODAbstract; 1. NeuralNetworkDescription; 1.1. Topology; 1.2. IncrementalLearningApproaches; 1.2.1. ClassicalAlgorithms; 1.2.2. CascadeCorrelation; 1.2.3. AlgorithmProposedbyDunkinetal.; 1.3. DesignofaNewIncrementalLearningAlgorithm; 1.3.1.NetworkTopology; 1.3.2. LearningandHiddenLayerBuildingTogether; 2. DecompositionMethod; 2.1. QuantificationoftheComplexityofaLearningDomain; 2.2. TheURBDecompositionMethod; 2.3. OverlappingbetweenSub-domains; 2.4. WorkontheDataset:ExtractionofaRepresentativeSetfromMassiveData. 3. ValidationoftheTrainingProcess3.1. TheParallelEnvironment; 3.2. ASimpleCase; 3.3. ARealWorldApplication:TheRadiotherapyContext; 3.3.1. RadiotherapyContext:DatasetBuilding; 3.3.2. ValidationProcess; 4. PerformanceEnhancementoftheNeuralNetworkExploitation; 4.1. AcceleratingtheDoseDepositEvaluations; 4.2. Results; 5. Conclusion; References; OVER-DETERMINED BOUNDARY VALUE PROBLEMS FOR LINEAR EQUATIONS OF ELASTODYNAMICS AND THEIR APPLICATIONS TO ELASTIC WAVE DIFFRACTION THEORY; Abstract; 1. Introduction; 2. AxiomaticBasisofDynamicElasticityTheory; 3. TheOver-DeterminedCauchyProblemintheSemi-Plane. 4. TheOver-DeterminedCauchyProbleminSemi-Space5. TheBasicBoundaryValueProblemsinSemi-SpaceandinSemi-Plane; 6. DefectsontheBoundaryofElasticSemi-Plane; 7. TwoElasticBodies. TheJumpProblem; 8. TheDiffractionofElasticWaveontheCrack; References; TWO FINITE ELEMENT METHODS FOR NEARLY INCOMPRESSIBLE LINEAR ELASTICITY USING SIMPLICIAL MESHES; Abstract; 1. Introduction; 2. TheBoundaryValueProblemofLinearElasticity; 2.1. StandardWeakFormulation; 2.2. MixedFormulation; 3. FiniteElementDiscretizationoftheNon-SymmetricSystem; 4. SymmetricApproachBasedonaThree-FieldFormulation. Mathematics Research. http://id.loc.gov/authorities/subjects/sh85082156 MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Mathematics Research fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082156 |
title | Advances in mathematics research. |
title_auth | Advances in mathematics research. |
title_exact_search | Advances in mathematics research. |
title_full | Advances in mathematics research. Vol. 17 / Albert R. Baswell, editor. |
title_fullStr | Advances in mathematics research. Vol. 17 / Albert R. Baswell, editor. |
title_full_unstemmed | Advances in mathematics research. Vol. 17 / Albert R. Baswell, editor. |
title_short | Advances in mathematics research. |
title_sort | advances in mathematics research |
topic | Mathematics Research. http://id.loc.gov/authorities/subjects/sh85082156 MATHEMATICS Essays. bisacsh MATHEMATICS Pre-Calculus. bisacsh MATHEMATICS Reference. bisacsh Mathematics Research fast |
topic_facet | Mathematics Research. MATHEMATICS Essays. MATHEMATICS Pre-Calculus. MATHEMATICS Reference. Mathematics Research |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=535144 |
work_keys_str_mv | AT baswellalbertr advancesinmathematicsresearchvol17 |