Classical invariant theory /:
There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
1999.
|
Schriftenreihe: | London Mathematical Society student texts ;
44. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition. |
Beschreibung: | 1 online resource (xxi, 280 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 247-259) and indexes. |
ISBN: | 9781107362369 1107362369 9780511623660 0511623666 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn831669750 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130325s1999 enka ob 001 0 eng d | ||
010 | |z 98033722 | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d CAMBR |d OCLCO |d IDEBK |d OL$ |d OCLCO |d YDXCP |d OCLCQ |d DEBSZ |d OCLCF |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d VTS |d REC |d OCLCO |d STF |d M8D |d OCLCQ |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d INARC | ||
019 | |a 708567594 |a 847968001 |a 1409550764 | ||
020 | |a 9781107362369 |q (electronic bk.) | ||
020 | |a 1107362369 |q (electronic bk.) | ||
020 | |a 9780511623660 |q (electronic bk.) | ||
020 | |a 0511623666 |q (electronic bk.) | ||
020 | |z 0521552435 | ||
020 | |z 9780521552431 | ||
020 | |z 0521558212 | ||
020 | |z 9780521558211 | ||
035 | |a (OCoLC)831669750 |z (OCoLC)708567594 |z (OCoLC)847968001 |z (OCoLC)1409550764 | ||
050 | 4 | |a QA201 |b .O48 1999eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512.5 |2 22 | |
084 | |a SK 260 |2 rvk | ||
084 | |a MAT 140f |2 stub | ||
084 | |a MAT 200f |2 stub | ||
084 | |a MAT 110f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Olver, Peter J. | |
245 | 1 | 0 | |a Classical invariant theory / |c Peter J. Olver. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 1999. | ||
300 | |a 1 online resource (xxi, 280 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 44 | |
504 | |a Includes bibliographical references (pages 247-259) and indexes. | ||
505 | 0 | 0 | |g 1. |t Prelude -- Quadratic Polynomials and Quadratic Forms -- |g 2. |t Basic Invariant Theory for Binary Forms -- |g 3. |t Groups and Transformations -- |g 4. |t Representations and Invariants -- |g 5. |t Transvectants -- |g 6. |t Symbolic Methods -- |g 7. |t Graphical Methods -- |g 8. |t Lie Groups and Moving Frames -- |g 9. |t Infinitesimal Methods -- |g 10. |t Multivariate Polynomials. |
520 | |a There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Invariants. |0 http://id.loc.gov/authorities/subjects/sh85067665 | |
650 | 6 | |a Invariants. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Invariants |2 fast | |
650 | 7 | |a Invariantentheorie |2 gnd |0 http://d-nb.info/gnd/4162209-1 | |
650 | 7 | |a INVARIANTES (ÁLGEBRA) |2 larpcal | |
650 | 7 | |a Invariants. |2 ram | |
650 | 7 | |a Nombres, Théorie des. |2 ram | |
650 | 7 | |a Formes binaires. |2 ram | |
650 | 7 | |a Formes quadratiques. |2 ram | |
650 | 7 | |a Transformations (mathématiques) |2 ram | |
650 | 7 | |a Lie, Groupes de. |2 ram | |
650 | 7 | |a Formes (mathématiques) |x Problèmes et exercices. |2 ram | |
776 | 0 | 8 | |i Print version: |a Olver, Peter J. |t Classical invariant theory. |d Cambridge, UK ; New York : Cambridge University Press, 1999 |z 0521552435 |w (DLC) 98033722 |w (OCoLC)39523387 |
830 | 0 | |a London Mathematical Society student texts ; |v 44. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551347 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10446153 | ||
938 | |a EBSCOhost |b EBSC |n 551347 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25159040 | ||
938 | |a YBP Library Services |b YANK |n 10374350 | ||
938 | |a Internet Archive |b INAR |n classicalinvaria0000olve | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn831669750 |
---|---|
_version_ | 1816882226239897601 |
adam_text | |
any_adam_object | |
author | Olver, Peter J. |
author_facet | Olver, Peter J. |
author_role | |
author_sort | Olver, Peter J. |
author_variant | p j o pj pjo |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA201 |
callnumber-raw | QA201 .O48 1999eb |
callnumber-search | QA201 .O48 1999eb |
callnumber-sort | QA 3201 O48 41999EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
classification_tum | MAT 140f MAT 200f MAT 110f |
collection | ZDB-4-EBA |
contents | Prelude -- Quadratic Polynomials and Quadratic Forms -- Basic Invariant Theory for Binary Forms -- Groups and Transformations -- Representations and Invariants -- Transvectants -- Symbolic Methods -- Graphical Methods -- Lie Groups and Moving Frames -- Infinitesimal Methods -- Multivariate Polynomials. |
ctrlnum | (OCoLC)831669750 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04049cam a2200745 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn831669750</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130325s1999 enka ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 98033722 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">INARC</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">708567594</subfield><subfield code="a">847968001</subfield><subfield code="a">1409550764</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362369</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362369</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511623660</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511623666</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521552435</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521552431</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521558212</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521558211</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)831669750</subfield><subfield code="z">(OCoLC)708567594</subfield><subfield code="z">(OCoLC)847968001</subfield><subfield code="z">(OCoLC)1409550764</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA201</subfield><subfield code="b">.O48 1999eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.5</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 140f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 200f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 110f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Olver, Peter J.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classical invariant theory /</subfield><subfield code="c">Peter J. Olver.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1999.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxi, 280 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">44</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 247-259) and indexes.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">1.</subfield><subfield code="t">Prelude -- Quadratic Polynomials and Quadratic Forms --</subfield><subfield code="g">2.</subfield><subfield code="t">Basic Invariant Theory for Binary Forms --</subfield><subfield code="g">3.</subfield><subfield code="t">Groups and Transformations --</subfield><subfield code="g">4.</subfield><subfield code="t">Representations and Invariants --</subfield><subfield code="g">5.</subfield><subfield code="t">Transvectants --</subfield><subfield code="g">6.</subfield><subfield code="t">Symbolic Methods --</subfield><subfield code="g">7.</subfield><subfield code="t">Graphical Methods --</subfield><subfield code="g">8.</subfield><subfield code="t">Lie Groups and Moving Frames --</subfield><subfield code="g">9.</subfield><subfield code="t">Infinitesimal Methods --</subfield><subfield code="g">10.</subfield><subfield code="t">Multivariate Polynomials.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Invariants.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85067665</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Invariants.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariantentheorie</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4162209-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">INVARIANTES (ÁLGEBRA)</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Invariants.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nombres, Théorie des.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes binaires.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes quadratiques.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transformations (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, Groupes de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Formes (mathématiques)</subfield><subfield code="x">Problèmes et exercices.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Olver, Peter J.</subfield><subfield code="t">Classical invariant theory.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 1999</subfield><subfield code="z">0521552435</subfield><subfield code="w">(DLC) 98033722</subfield><subfield code="w">(OCoLC)39523387</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">44.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551347</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10446153</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">551347</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25159040</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10374350</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">classicalinvaria0000olve</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn831669750 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:15Z |
institution | BVB |
isbn | 9781107362369 1107362369 9780511623660 0511623666 |
language | English |
oclc_num | 831669750 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxi, 280 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Olver, Peter J. Classical invariant theory / Peter J. Olver. Cambridge, UK ; New York : Cambridge University Press, 1999. 1 online resource (xxi, 280 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 44 Includes bibliographical references (pages 247-259) and indexes. 1. Prelude -- Quadratic Polynomials and Quadratic Forms -- 2. Basic Invariant Theory for Binary Forms -- 3. Groups and Transformations -- 4. Representations and Invariants -- 5. Transvectants -- 6. Symbolic Methods -- 7. Graphical Methods -- 8. Lie Groups and Moving Frames -- 9. Infinitesimal Methods -- 10. Multivariate Polynomials. There has been a resurgence of interest in classical invariant theory driven by several factors: new theoretical developments; a revival of computational methods coupled with powerful new computer algebra packages; and a wealth of new applications, ranging from number theory to geometry, physics to computer vision. This book provides readers with a self-contained introduction to the classical theory as well as modern developments and applications. Aimed at advanced undergraduate and graduate students the book includes many exercises and historical details, complete proofs of the fundamental theorems, and a lively and provocative exposition. Print version record. Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Invariants. MATHEMATICS Algebra Linear. bisacsh Invariants fast Invariantentheorie gnd http://d-nb.info/gnd/4162209-1 INVARIANTES (ÁLGEBRA) larpcal Invariants. ram Nombres, Théorie des. ram Formes binaires. ram Formes quadratiques. ram Transformations (mathématiques) ram Lie, Groupes de. ram Formes (mathématiques) Problèmes et exercices. ram Print version: Olver, Peter J. Classical invariant theory. Cambridge, UK ; New York : Cambridge University Press, 1999 0521552435 (DLC) 98033722 (OCoLC)39523387 London Mathematical Society student texts ; 44. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551347 Volltext |
spellingShingle | Olver, Peter J. Classical invariant theory / London Mathematical Society student texts ; Prelude -- Quadratic Polynomials and Quadratic Forms -- Basic Invariant Theory for Binary Forms -- Groups and Transformations -- Representations and Invariants -- Transvectants -- Symbolic Methods -- Graphical Methods -- Lie Groups and Moving Frames -- Infinitesimal Methods -- Multivariate Polynomials. Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Invariants. MATHEMATICS Algebra Linear. bisacsh Invariants fast Invariantentheorie gnd http://d-nb.info/gnd/4162209-1 INVARIANTES (ÁLGEBRA) larpcal Invariants. ram Nombres, Théorie des. ram Formes binaires. ram Formes quadratiques. ram Transformations (mathématiques) ram Lie, Groupes de. ram Formes (mathématiques) Problèmes et exercices. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85067665 http://d-nb.info/gnd/4162209-1 |
title | Classical invariant theory / |
title_alt | Prelude -- Quadratic Polynomials and Quadratic Forms -- Basic Invariant Theory for Binary Forms -- Groups and Transformations -- Representations and Invariants -- Transvectants -- Symbolic Methods -- Graphical Methods -- Lie Groups and Moving Frames -- Infinitesimal Methods -- Multivariate Polynomials. |
title_auth | Classical invariant theory / |
title_exact_search | Classical invariant theory / |
title_full | Classical invariant theory / Peter J. Olver. |
title_fullStr | Classical invariant theory / Peter J. Olver. |
title_full_unstemmed | Classical invariant theory / Peter J. Olver. |
title_short | Classical invariant theory / |
title_sort | classical invariant theory |
topic | Invariants. http://id.loc.gov/authorities/subjects/sh85067665 Invariants. MATHEMATICS Algebra Linear. bisacsh Invariants fast Invariantentheorie gnd http://d-nb.info/gnd/4162209-1 INVARIANTES (ÁLGEBRA) larpcal Invariants. ram Nombres, Théorie des. ram Formes binaires. ram Formes quadratiques. ram Transformations (mathématiques) ram Lie, Groupes de. ram Formes (mathématiques) Problèmes et exercices. ram |
topic_facet | Invariants. MATHEMATICS Algebra Linear. Invariants Invariantentheorie INVARIANTES (ÁLGEBRA) Nombres, Théorie des. Formes binaires. Formes quadratiques. Transformations (mathématiques) Lie, Groupes de. Formes (mathématiques) Problèmes et exercices. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=551347 |
work_keys_str_mv | AT olverpeterj classicalinvarianttheory |