Concentration inequalities :: a nonasymptotic theory of independence /

An accessible account of the rich theory surrounding concentration inequalities in probability theory, with applications from machine learning and statistics to high-dimensional geometry. This book introduces key ideas and presents a detailed summary of the state-of-the-art in the area making it ide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Boucheron, Stéphane (VerfasserIn), Lugosi, Gábor (VerfasserIn), Massart, Pascal (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Oxford : Oxford University Press, 2013.
Schlagworte:
Online-Zugang:Volltext
Zusammenfassung:An accessible account of the rich theory surrounding concentration inequalities in probability theory, with applications from machine learning and statistics to high-dimensional geometry. This book introduces key ideas and presents a detailed summary of the state-of-the-art in the area making it ideal for independent learning and as a reference.
Beschreibung:1 online resource (480 pages) : illustrations
Bibliographie:Includes bibliographical references.
ISBN:9780199535255
0199535256
9781299160057
1299160050
9780191655500
0191655503
0191747106
9780191747106

Es ist kein Print-Exemplar vorhanden.

Volltext öffnen