Food industry wastes :: assessment and recuperation of commodities /
Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Amsterdam :
Elsevier : Academic Press,
2013.
|
Ausgabe: | First edition. |
Schriftenreihe: | Food science and technology international series.
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Zusammenfassung: | Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key resource for implementing processes as well as giving researchers a starting point for the development of new options for the recuperation of these waste for community benefit. There were over 34 million tons of food waste generated in the US alone in 2009 - at a cost of approximately $43 billion. And while less than 3% of that waste was recovered and recycled, there is growing interest and development in finding ways to utilize this waste in ways that will not only reduce greenhouse gasses, but provide energy, and potentially provide resources for other purposes. Food waste is an area of focus for a wide range of related industries from food science to energy and engineeringThis international authoring team represents the leading edge in research and development Provides insights on leading areas of current research as well as looking toward future opportunities for reusing food waste. |
Beschreibung: | 1 online resource (xxvi, 312 pages) : illustrations. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780123919281 0123919282 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn828864038 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 130304s2013 ne a ob 001 0 eng d | ||
040 | |a GZM |b eng |e rda |e pn |c GZM |d GZM |d UIU |d YDXCP |d OPELS |d N$T |d CUV |d OCLCQ |d CDX |d OCLCF |d OCLCQ |d UIU |d STF |d ICA |d OCLCQ |d COCUF |d K6U |d OCLCQ |d Z5A |d ZCU |d YDX |d ESU |d OCLCQ |d OCLCA |d U3W |d D6H |d VTS |d CEF |d RRP |d OCLCQ |d AUD |d LEAUB |d AJS |d OCLCO |d LUU |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
066 | |c (S | ||
019 | |a 835592266 | ||
020 | |a 9780123919281 |q (electronic bk.) | ||
020 | |a 0123919282 |q (electronic bk.) | ||
020 | |z 9780123919212 | ||
020 | |z 0123919215 | ||
035 | |a (OCoLC)828864038 |z (OCoLC)835592266 | ||
050 | 4 | |a TD899.F585 |b F66 2013 | |
070 | 0 | |a TD899.F585 |b F663 2013 | |
072 | 7 | |a TEC |x 012000 |2 bisacsh | |
082 | 7 | |a 664 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Food industry wastes : |b assessment and recuperation of commodities / |c edited by Maria R. Kosseva, Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo Campus, China, Expert on the European Commission LIFE Sciences Panel, Belgium ; Colin Webb, School of Chemical Engineering & Analytical Science, University of Manchester, Manchester, UK. |
250 | |a First edition. | ||
264 | 1 | |a Amsterdam : |b Elsevier : |b Academic Press, |c 2013. | |
300 | |a 1 online resource (xxvi, 312 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Food science and technology international series | |
504 | |a Includes bibliographical references and index. | ||
520 | |a Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key resource for implementing processes as well as giving researchers a starting point for the development of new options for the recuperation of these waste for community benefit. There were over 34 million tons of food waste generated in the US alone in 2009 - at a cost of approximately $43 billion. And while less than 3% of that waste was recovered and recycled, there is growing interest and development in finding ways to utilize this waste in ways that will not only reduce greenhouse gasses, but provide energy, and potentially provide resources for other purposes. Food waste is an area of focus for a wide range of related industries from food science to energy and engineeringThis international authoring team represents the leading edge in research and development Provides insights on leading areas of current research as well as looking toward future opportunities for reusing food waste. | ||
505 | 0 | |6 880-01 |a Introduction: Causes and Challenges of Food Wastage -- Part I: Food Industry Wastes: Problems and Opportunities -- Chapter 1. Recent European Legislation on Management of Wastes in the Food Industry -- Chapter 2. Development of Green Production Strategies -- Chapter 3. Sources, Characterization, and Compostition of Food Industry Wastes -- Part II: Treatment of Solid Food Wastes -- Chapter 4. Use of Waste Bread to Produce Fermentation Products -- Chapter 5. Recovery of Commodities from Food Wastes Using Solid State Fermentation -- Chapter 6. Functional Food and Nutraceuticals Derived from Food Industry Wastes -- Chapter 7. Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- Part III: Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes -- Chapter 8. Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- Chapter 9. Hydrogen Generation from Food Industry and Biodiesel Wastes -- Chapter 10. Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- Chapter 11. Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- Part IV: Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater -- Chapter 12. Accounting for the Impact of Food Waste on Water Resources and Climate Change -- Chapter 13. Electrical Energy from Wineries: A New Approach Using Microbial Fuel Cells -- Chapter 14. Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology -- Part V: Assessment of Environmental Impact of Food Production and Consumption -- Chapter 15. Life Cycle Assessment Focusing on Food Industry Wastes -- Chapter 16. Food System Sustainability and the Consumer. | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Food industry and trade |x Waste disposal. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Food Science. |2 bisacsh | |
650 | 7 | |a Food industry and trade |x Waste disposal |2 fast | |
700 | 1 | |a Kosseva, Maria R., |e editor. |0 http://id.loc.gov/authorities/names/no2013041787 | |
700 | 1 | |a Webb, Colin, |e editor. |0 http://id.loc.gov/authorities/names/n81064051 | |
758 | |i has work: |a Food industry wastes (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFxCkCcG89H4QKxD4QCBpq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Food industry wastes. |d London ; Singapore : Elsevier/Academic Press, ©2013 |z 9780123919212 |w (OCoLC)828434965 |
830 | 0 | |a Food science and technology international series. |0 http://id.loc.gov/authorities/names/n94037846 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485168 |3 Volltext |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://www.sciencedirect.com/science/book/9780123919212 |3 Volltext |
880 | 0 | 0 | |6 505-00/(S |g 4.1.1. |t Organic Acids from Fruit Pomace -- |g 4.1.1.1. |t Lactic Acid Production -- |g 4.1.1.2. |t Citric Acid Production -- |g 4.1.1.3. |t Fatty Acid Production -- |g 4.1.2. |t Production of Ethanol -- |g 4.1.3. |t Production of Enzymes -- |g 4.1.3.1. |t α-Amylase -- |g 4.1.3.2. |t Xylanase -- |g 4.1.3.3. |t Protease -- |g 4.1.3.4. |t Laccase -- |g 4.1.3.5. |t Tannase -- |g 4.1.4. |t Production of Polysaccharides -- |g 4.1.5. |t Production of Baker's Yeast -- |g 4.1.6. |t Feed Protein -- |g 4.2. |t Production of Fine Chemicals: Aroma Compounds, Antibiotics and Pigments -- |g 4.2.1. |t Aroma Compounds -- |g 4.2.2. |t Antibiotics -- |g 4.2.3. |t Production of Pigments -- |g 5. |t Conclusions -- -- |g Ch. 6. |t Functional Food and Nutraceuticals Derived from Food Industry Wastes -- |g 1. |t Introduction -- |g 1.1. |t Definition of Nutraceuticals and Functional Food -- |g 2. |t Phenolic Compounds Derived from Fruit-and-Vegetable Processing Wastes -- |g 2.1. |t Flavonoids -- |g 2.2. |t Polyphenol Content of Grape Wine Wastes -- |g 2. |t 2. 1 Proanthocyanidins -- |g 2. |t 2. 2 Resveratrol -- |g 2. |t 2. 3 Anthocyanins -- |g 2.3. |t Polyphenols in Apple Pomace -- |g 3. |t Vegetable Flavonoids -- |g 3.1. |t Onion Flavonoids -- |g 3.2. |t Flavonols of Onions -- |g 3.3. |t Functionality of Flavonoids -- |g 3. |t 3. 1 Prevention of Atherosclerosis and Cardiovascular Disease -- |g 3. |t 3. 2 Antioxidant Activity -- |g 3. |t 3. 3 Metabolic Syndrome -- |g 3. |t 3. 4 Hormonal Activity -- |g 4. |t Coloring Agents and Antioxidants -- |g 4.1. |t Betalains -- |g 4.2. |t Lycopenes -- |g 5. |t Dietary Fibers -- |g 6. |t Sulfur-Containing Bioactive Compounds -- |g 6.1. |t Cabbage Glucosinolates -- |g 6.2. |t Methods of Processing -- |g 7. |t Extraction Processes from Food-and-Vegetable Waste -- |g 7.1. |t Extraction of Phenolic Compounds from Olive Pomace -- |g 7.2. |t Solvent and Enzyme-Aided Aqueous Extraction of Goldenberry -- |g 7.3. |t Extraction of Antioxidants from Potato Peels by Pressurized Liquids -- |g 7.4. |t Extraction of Phytochemicals from Common Vegetables -- |g 8. |t Whey as a Source of Bioactive Peptides -- |g 8.1. |t Occurrence of Bioactive Peptides in Whey and Other Dairy By-Products -- |g 8.2. |t Functionality of Bioactive Peptides -- |g 8.2.1. |t Regulation of the Gastrointestinal System -- |g 8.2.2. |t Regulation of the Immune System -- |g 8.2.3. |t Regulation of the Cardiovascular System -- |g 8.2.4. |t Regulation of the Nervous System -- |g 8.2.5. |t Antimicrobial Function -- |g 8.2.6. |t Growth Factor Activity -- |g 8.3. |t Commercial Dairy Products Containing Bioactive Peptides -- |g 8.4. |t Commercial-Scale Production -- |g 9. |t Product Development, Marketing, and Consumer Acceptance of Functional Foods -- |g 10. |t Conclusions -- -- |g Ch. 7. |t Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- |g 1. |t Introduction -- |g 2. |t Basic Principles of Anaerobic Digestion -- |g 2.1. |t Conversion Flow of Organic Matter to Methane -- |g 2.1.1. |t Disintegration and Hydrolysis -- |g 2.1.2. |t Acidogenesis -- |g 2.1.3. |t Acetogenesis (H2-producing) -- |g 2.1.4. |t Methanogenesis -- |g 2.2. |t Methane Production Potential of Organic Wastes -- |g 2.3. |t Environmental Factors Affecting Anaerobic Digestion -- |g 2.3.1. |t Temperature -- |g 2.3.2. |t pH and Alkalinity -- |g 2.3.3. |t Biological Toxic Compounds -- |g 3. |t Process Development for Anaerobic Digestion of Organic Wastes -- |g 3.1. |t Reactor Design for Anaerobic Digestion -- |g 3.1.1. |t Continuously Stirred Tank Reactor (CSTR) -- |g 3.1.2. |t Repeated Batch System -- |g 3.1.3. |t Plugflow Reactor System -- |g 3.2. |t High-Rate Methane Fermentation -- |g 3.2.1. |t UASB System -- |g 3.2.2. |t EGSB System -- |g 3.2.3. |t UAFP System -- |g 3.3. |t Multistage Systems -- |g 3.3.1. |t Hydrogen-Methane Two-Stage Fermentation System (Hy-Met Process) -- |g 3.3.1.1. |t Application to Brewery Effluent -- |g 3.3.1.2. |t Application to Bread Manufacturing Wastes -- |g 3.3.2. |t Ammonia-Methane Two-Stage System -- |g 4. |t Fertilization of Residues After Anaerobic Digestion -- |g 5. |t Conclusion -- -- |g III. |t Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes. |
880 | 0 | 0 | |6 505-01/(S |g Ch. 8. |t Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- |g 1. |t Introduction -- |g 2. |t Methods of Immobilization -- |g 2.1. |t Definition of Immobilized Biocatalyst -- |g 2.2. |t Adsorption, Gel Entrapment, and Covalent-Binding -- |g 2.3. |t Microencapsulation -- |g 2.3.1. |t Emulsion/Interfacial Polymerization -- |g 2.3.2. |t Liquid Droplet Forming-One-Step Method -- |g 2.4. |t Stabilization of Enzymes via Immobilization -- |g 2.4.1. |t Multipoint Covalent Attachment -- |g 2.4.2. |t Multi-Subunit Immobilization -- |g 2.4.3. |t Chemical Modifications -- |g 3. |t Immobilized Enzymes -- |g 3.1. |t Lactose Hydrolysis -- |g 3.2. |t Production of Galacto-Oligosaccharides -- |g 4. |t Immobilized Cell Systems -- |g 4.1. |t Ethanol Production -- |g 4.2. |t Lactic Acid Production -- |g 5. |t Bioreactor Systems With Immobilized Biocatalyst -- |g 5.1. |t Packed-Bed Reactors (PBRs) -- |g 5.2. |t Continuous-Flow Stirred-Tank Reactors (CSTR) -- |g 5.3. |t Fluidized-Bed Reactors (FBRs) -- |g 5.4. |t Membrane Reactors (MRs) -- |g 6. |t Kinetic Performance of the Immobilized Cells (IMCs) -- |g 6.1. |t Kinetics of Free Cells -- |g 6.2. |t Mass Transfer Considerations and the Observed Reaction Rate in an IMC System -- |g 7. |t Mathematical Modeling of Immobilized Cell System -- |g 8. |t Industrial Applications -- |g 8.1. |t Lactose Hydrolysis with Immobilized β-Galactosidase -- |g 8.2. |t Ethanol Production from Whey with Flocculated Yeasts -- |g 9. |t Conclusions -- -- |g Ch. 9. |t Hydrogen Generation from Food Industry and Biodiesel Wastes -- |g 1. |t Introduction -- |g 2. |t Basic Principle of Dark Hydrogen Fermentation -- |g 2.1. |t Hydrogen Production by Strict Anaerobes -- |g 2.2. |t Hydrogen Production by Facultative Anaerobes -- |g 3. |t Effect of Intracellular and Extracellular Redox States on Hydrogen Production -- |g 4. |t Bioreactor System for High-Rate Hydrogen Production -- |g 5. |t Hydrogen Production from Industrial Organic Wastes -- |g 5.1. |t Carbohydrates -- |g 5.2. |t Food Oil (Glycerol-Rich Residue Discharged after Biodiesel Manufacturing) -- |g 6. |t Treatment of Effluent After Dark Hydrogen Fermentation -- |g 6.1. |t Methane Fermentation -- |g 6.2. |t Photobiological Hydrogen Fermentation -- |g 7. |t Concluding Remarks -- -- |g Ch. 10. |t Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- |g 1. |t Introduction -- |g 2. |t Thermophilic Aerobic Digestion -- |g 3. |t Thermophilic Microorganisms -- |g 4. |t Bioremediation and Bio-Augmentation Strategies -- |g 4.1. |t Target Wastes -- |g 4.1.1. |t Bioconversion of Cheese Whey -- |g 4.1.1.1. |t Strategy 1 Experiment -- |g 4.1.1.2. |t Strategy 2 Experiments -- |g 4.1.1.3. |t Investigations Into Reduction of Chemical Oxygen Demand During a One-Stage Process -- |g 4.1.2. |t Bioconversion of Grain Stillage/Distiller's Slops -- |g 4.1.3. |t Bioconversion of Potato Stillage/Distiller's Slops -- |g 4.1.4. |t Bioconversion of Potato Starch Production Wastes -- |g 4.1.5. |t Bioconversion of Wheat Stillage -- |g 5. |t A New Bioreactor Designed for Thermophilic Digestion -- |g 5.1. |t General Layout and Operation System -- |g 5.2. |t Bioreactor Concept and Description -- |g 5.3. |t Bioreactor Performance -- |g 6. |t Feed Production From Food Industry Wastes -- |g 7. |t Conclusions -- -- |g Ch. 11. |t Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- |g 1. |t Introduction -- |g 2. |t Mathematical Models of Bioreactors and Biodegradation Processes -- |g 2.1. |t Modeling of Aerobic Biodegradation of Cheese Whey -- |g 2.1.1. |t Approach I -- |g 2.1.2. |t Approach II -- |g 2.2. |t Modeling of the Biodegradation of Potato Stillage/ Distiller's Slops -- |g 2.2.1. |t Version for Continuous Biodegradation -- |g 2.2.2. |t Version for Batch Biodegradation -- |g 2.2.3. |t Comparison of Model Output and Experimental Data -- |g 2.3. |t Modeling of Anaerobic Digestion (AD) -- |g 2.3.1. |t Case Study 1: Anaerobic Treatment of Chicken Wastes -- |g 2.3.1.1. |t Model Assumptions -- |g 2.3.1.2. |t Main Reactions Assumed in the Model -- |g 2.4. |t Modeling of an Autothermal Thermophilic Aerobic Digester (ATAD) -- |g 2.4.1. |t Mass Balance -- |g 2.4.2. |t Energy Balance -- |g 2.5. |t Modeling of Wastewater Treatment Plants (WWTPs) -- |g 2.5.1. |t Steady-State Models of WWTPs -- |g 3. |t Process Analytical Technology -- |g 4. |t Control Strategy Development -- |g 4.1. |t Fuzzy Logic Control -- |g 4.2. |t Control Strategy Development for Food Wastes -- |g 4.2.1. |t Supervisory Control Strategies -- |g 4.2.2. |t Physiological State Classification Strategies -- |g 4.2.3. |t Direct Control Strategies -- |g 4.2.4. |t Development of the KBCS -- |g 5. |t Conclusions. |
938 | |a Coutts Information Services |b COUT |n 24807780 | ||
938 | |a EBSCOhost |b EBSC |n 485168 | ||
938 | |a YBP Library Services |b YANK |n 10256530 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn828864038 |
---|---|
_version_ | 1816882223717023744 |
adam_text | |
any_adam_object | |
author2 | Kosseva, Maria R. Webb, Colin |
author2_role | edt edt |
author2_variant | m r k mr mrk c w cw |
author_GND | http://id.loc.gov/authorities/names/no2013041787 http://id.loc.gov/authorities/names/n81064051 |
author_facet | Kosseva, Maria R. Webb, Colin |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TD899 |
callnumber-raw | TD899.F585 F66 2013 |
callnumber-search | TD899.F585 F66 2013 |
callnumber-sort | TD 3899 F585 F66 42013 |
callnumber-subject | TD - Environmental Technology |
collection | ZDB-4-EBA |
contents | Introduction: Causes and Challenges of Food Wastage -- Part I: Food Industry Wastes: Problems and Opportunities -- Chapter 1. Recent European Legislation on Management of Wastes in the Food Industry -- Chapter 2. Development of Green Production Strategies -- Chapter 3. Sources, Characterization, and Compostition of Food Industry Wastes -- Part II: Treatment of Solid Food Wastes -- Chapter 4. Use of Waste Bread to Produce Fermentation Products -- Chapter 5. Recovery of Commodities from Food Wastes Using Solid State Fermentation -- Chapter 6. Functional Food and Nutraceuticals Derived from Food Industry Wastes -- Chapter 7. Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- Part III: Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes -- Chapter 8. Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- Chapter 9. Hydrogen Generation from Food Industry and Biodiesel Wastes -- Chapter 10. Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- Chapter 11. Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- Part IV: Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater -- Chapter 12. Accounting for the Impact of Food Waste on Water Resources and Climate Change -- Chapter 13. Electrical Energy from Wineries: A New Approach Using Microbial Fuel Cells -- Chapter 14. Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology -- Part V: Assessment of Environmental Impact of Food Production and Consumption -- Chapter 15. Life Cycle Assessment Focusing on Food Industry Wastes -- Chapter 16. Food System Sustainability and the Consumer. |
ctrlnum | (OCoLC)828864038 |
dewey-full | 664 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 664 - Food technology |
dewey-raw | 664 |
dewey-search | 664 |
dewey-sort | 3664 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie |
edition | First edition. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>14319cam a2200589 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn828864038</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">130304s2013 ne a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">GZM</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">GZM</subfield><subfield code="d">GZM</subfield><subfield code="d">UIU</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OPELS</subfield><subfield code="d">N$T</subfield><subfield code="d">CUV</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UIU</subfield><subfield code="d">STF</subfield><subfield code="d">ICA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">Z5A</subfield><subfield code="d">ZCU</subfield><subfield code="d">YDX</subfield><subfield code="d">ESU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">RRP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AUD</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">LUU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">835592266</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123919281</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123919282</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780123919212</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0123919215</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)828864038</subfield><subfield code="z">(OCoLC)835592266</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TD899.F585</subfield><subfield code="b">F66 2013</subfield></datafield><datafield tag="070" ind1="0" ind2=" "><subfield code="a">TD899.F585</subfield><subfield code="b">F663 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">664</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Food industry wastes :</subfield><subfield code="b">assessment and recuperation of commodities /</subfield><subfield code="c">edited by Maria R. Kosseva, Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo Campus, China, Expert on the European Commission LIFE Sciences Panel, Belgium ; Colin Webb, School of Chemical Engineering & Analytical Science, University of Manchester, Manchester, UK.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam :</subfield><subfield code="b">Elsevier :</subfield><subfield code="b">Academic Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxvi, 312 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Food science and technology international series</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key resource for implementing processes as well as giving researchers a starting point for the development of new options for the recuperation of these waste for community benefit. There were over 34 million tons of food waste generated in the US alone in 2009 - at a cost of approximately $43 billion. And while less than 3% of that waste was recovered and recycled, there is growing interest and development in finding ways to utilize this waste in ways that will not only reduce greenhouse gasses, but provide energy, and potentially provide resources for other purposes. Food waste is an area of focus for a wide range of related industries from food science to energy and engineeringThis international authoring team represents the leading edge in research and development Provides insights on leading areas of current research as well as looking toward future opportunities for reusing food waste.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Introduction: Causes and Challenges of Food Wastage -- Part I: Food Industry Wastes: Problems and Opportunities -- Chapter 1. Recent European Legislation on Management of Wastes in the Food Industry -- Chapter 2. Development of Green Production Strategies -- Chapter 3. Sources, Characterization, and Compostition of Food Industry Wastes -- Part II: Treatment of Solid Food Wastes -- Chapter 4. Use of Waste Bread to Produce Fermentation Products -- Chapter 5. Recovery of Commodities from Food Wastes Using Solid State Fermentation -- Chapter 6. Functional Food and Nutraceuticals Derived from Food Industry Wastes -- Chapter 7. Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- Part III: Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes -- Chapter 8. Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- Chapter 9. Hydrogen Generation from Food Industry and Biodiesel Wastes -- Chapter 10. Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- Chapter 11. Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- Part IV: Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater -- Chapter 12. Accounting for the Impact of Food Waste on Water Resources and Climate Change -- Chapter 13. Electrical Energy from Wineries: A New Approach Using Microbial Fuel Cells -- Chapter 14. Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology -- Part V: Assessment of Environmental Impact of Food Production and Consumption -- Chapter 15. Life Cycle Assessment Focusing on Food Industry Wastes -- Chapter 16. Food System Sustainability and the Consumer.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Food industry and trade</subfield><subfield code="x">Waste disposal.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Food Science.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Food industry and trade</subfield><subfield code="x">Waste disposal</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kosseva, Maria R.,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2013041787</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Webb, Colin,</subfield><subfield code="e">editor.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n81064051</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Food industry wastes (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFxCkCcG89H4QKxD4QCBpq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Food industry wastes.</subfield><subfield code="d">London ; Singapore : Elsevier/Academic Press, ©2013</subfield><subfield code="z">9780123919212</subfield><subfield code="w">(OCoLC)828434965</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Food science and technology international series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94037846</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485168</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://www.sciencedirect.com/science/book/9780123919212</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-00/(S</subfield><subfield code="g">4.1.1.</subfield><subfield code="t">Organic Acids from Fruit Pomace --</subfield><subfield code="g">4.1.1.1.</subfield><subfield code="t">Lactic Acid Production --</subfield><subfield code="g">4.1.1.2.</subfield><subfield code="t">Citric Acid Production --</subfield><subfield code="g">4.1.1.3.</subfield><subfield code="t">Fatty Acid Production --</subfield><subfield code="g">4.1.2.</subfield><subfield code="t">Production of Ethanol --</subfield><subfield code="g">4.1.3.</subfield><subfield code="t">Production of Enzymes --</subfield><subfield code="g">4.1.3.1.</subfield><subfield code="t">α-Amylase --</subfield><subfield code="g">4.1.3.2.</subfield><subfield code="t">Xylanase --</subfield><subfield code="g">4.1.3.3.</subfield><subfield code="t">Protease --</subfield><subfield code="g">4.1.3.4.</subfield><subfield code="t">Laccase --</subfield><subfield code="g">4.1.3.5.</subfield><subfield code="t">Tannase --</subfield><subfield code="g">4.1.4.</subfield><subfield code="t">Production of Polysaccharides --</subfield><subfield code="g">4.1.5.</subfield><subfield code="t">Production of Baker's Yeast --</subfield><subfield code="g">4.1.6.</subfield><subfield code="t">Feed Protein --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Production of Fine Chemicals: Aroma Compounds, Antibiotics and Pigments --</subfield><subfield code="g">4.2.1.</subfield><subfield code="t">Aroma Compounds --</subfield><subfield code="g">4.2.2.</subfield><subfield code="t">Antibiotics --</subfield><subfield code="g">4.2.3.</subfield><subfield code="t">Production of Pigments --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions -- --</subfield><subfield code="g">Ch. 6.</subfield><subfield code="t">Functional Food and Nutraceuticals Derived from Food Industry Wastes --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">1.1.</subfield><subfield code="t">Definition of Nutraceuticals and Functional Food --</subfield><subfield code="g">2.</subfield><subfield code="t">Phenolic Compounds Derived from Fruit-and-Vegetable Processing Wastes --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Flavonoids --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Polyphenol Content of Grape Wine Wastes --</subfield><subfield code="g">2.</subfield><subfield code="t">2. 1 Proanthocyanidins --</subfield><subfield code="g">2.</subfield><subfield code="t">2. 2 Resveratrol --</subfield><subfield code="g">2.</subfield><subfield code="t">2. 3 Anthocyanins --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Polyphenols in Apple Pomace --</subfield><subfield code="g">3.</subfield><subfield code="t">Vegetable Flavonoids --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Onion Flavonoids --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Flavonols of Onions --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Functionality of Flavonoids --</subfield><subfield code="g">3.</subfield><subfield code="t">3. 1 Prevention of Atherosclerosis and Cardiovascular Disease --</subfield><subfield code="g">3.</subfield><subfield code="t">3. 2 Antioxidant Activity --</subfield><subfield code="g">3.</subfield><subfield code="t">3. 3 Metabolic Syndrome --</subfield><subfield code="g">3.</subfield><subfield code="t">3. 4 Hormonal Activity --</subfield><subfield code="g">4.</subfield><subfield code="t">Coloring Agents and Antioxidants --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Betalains --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Lycopenes --</subfield><subfield code="g">5.</subfield><subfield code="t">Dietary Fibers --</subfield><subfield code="g">6.</subfield><subfield code="t">Sulfur-Containing Bioactive Compounds --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Cabbage Glucosinolates --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Methods of Processing --</subfield><subfield code="g">7.</subfield><subfield code="t">Extraction Processes from Food-and-Vegetable Waste --</subfield><subfield code="g">7.1.</subfield><subfield code="t">Extraction of Phenolic Compounds from Olive Pomace --</subfield><subfield code="g">7.2.</subfield><subfield code="t">Solvent and Enzyme-Aided Aqueous Extraction of Goldenberry --</subfield><subfield code="g">7.3.</subfield><subfield code="t">Extraction of Antioxidants from Potato Peels by Pressurized Liquids --</subfield><subfield code="g">7.4.</subfield><subfield code="t">Extraction of Phytochemicals from Common Vegetables --</subfield><subfield code="g">8.</subfield><subfield code="t">Whey as a Source of Bioactive Peptides --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Occurrence of Bioactive Peptides in Whey and Other Dairy By-Products --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Functionality of Bioactive Peptides --</subfield><subfield code="g">8.2.1.</subfield><subfield code="t">Regulation of the Gastrointestinal System --</subfield><subfield code="g">8.2.2.</subfield><subfield code="t">Regulation of the Immune System --</subfield><subfield code="g">8.2.3.</subfield><subfield code="t">Regulation of the Cardiovascular System --</subfield><subfield code="g">8.2.4.</subfield><subfield code="t">Regulation of the Nervous System --</subfield><subfield code="g">8.2.5.</subfield><subfield code="t">Antimicrobial Function --</subfield><subfield code="g">8.2.6.</subfield><subfield code="t">Growth Factor Activity --</subfield><subfield code="g">8.3.</subfield><subfield code="t">Commercial Dairy Products Containing Bioactive Peptides --</subfield><subfield code="g">8.4.</subfield><subfield code="t">Commercial-Scale Production --</subfield><subfield code="g">9.</subfield><subfield code="t">Product Development, Marketing, and Consumer Acceptance of Functional Foods --</subfield><subfield code="g">10.</subfield><subfield code="t">Conclusions -- --</subfield><subfield code="g">Ch. 7.</subfield><subfield code="t">Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Basic Principles of Anaerobic Digestion --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Conversion Flow of Organic Matter to Methane --</subfield><subfield code="g">2.1.1.</subfield><subfield code="t">Disintegration and Hydrolysis --</subfield><subfield code="g">2.1.2.</subfield><subfield code="t">Acidogenesis --</subfield><subfield code="g">2.1.3.</subfield><subfield code="t">Acetogenesis (H2-producing) --</subfield><subfield code="g">2.1.4.</subfield><subfield code="t">Methanogenesis --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Methane Production Potential of Organic Wastes --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Environmental Factors Affecting Anaerobic Digestion --</subfield><subfield code="g">2.3.1.</subfield><subfield code="t">Temperature --</subfield><subfield code="g">2.3.2.</subfield><subfield code="t">pH and Alkalinity --</subfield><subfield code="g">2.3.3.</subfield><subfield code="t">Biological Toxic Compounds --</subfield><subfield code="g">3.</subfield><subfield code="t">Process Development for Anaerobic Digestion of Organic Wastes --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Reactor Design for Anaerobic Digestion --</subfield><subfield code="g">3.1.1.</subfield><subfield code="t">Continuously Stirred Tank Reactor (CSTR) --</subfield><subfield code="g">3.1.2.</subfield><subfield code="t">Repeated Batch System --</subfield><subfield code="g">3.1.3.</subfield><subfield code="t">Plugflow Reactor System --</subfield><subfield code="g">3.2.</subfield><subfield code="t">High-Rate Methane Fermentation --</subfield><subfield code="g">3.2.1.</subfield><subfield code="t">UASB System --</subfield><subfield code="g">3.2.2.</subfield><subfield code="t">EGSB System --</subfield><subfield code="g">3.2.3.</subfield><subfield code="t">UAFP System --</subfield><subfield code="g">3.3.</subfield><subfield code="t">Multistage Systems --</subfield><subfield code="g">3.3.1.</subfield><subfield code="t">Hydrogen-Methane Two-Stage Fermentation System (Hy-Met Process) --</subfield><subfield code="g">3.3.1.1.</subfield><subfield code="t">Application to Brewery Effluent --</subfield><subfield code="g">3.3.1.2.</subfield><subfield code="t">Application to Bread Manufacturing Wastes --</subfield><subfield code="g">3.3.2.</subfield><subfield code="t">Ammonia-Methane Two-Stage System --</subfield><subfield code="g">4.</subfield><subfield code="t">Fertilization of Residues After Anaerobic Digestion --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusion -- --</subfield><subfield code="g">III.</subfield><subfield code="t">Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes.</subfield></datafield><datafield tag="880" ind1="0" ind2="0"><subfield code="6">505-01/(S</subfield><subfield code="g">Ch. 8.</subfield><subfield code="t">Use of Immobilized Biocatalyst for Valorization of Whey Lactose --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Methods of Immobilization --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Definition of Immobilized Biocatalyst --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Adsorption, Gel Entrapment, and Covalent-Binding --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Microencapsulation --</subfield><subfield code="g">2.3.1.</subfield><subfield code="t">Emulsion/Interfacial Polymerization --</subfield><subfield code="g">2.3.2.</subfield><subfield code="t">Liquid Droplet Forming-One-Step Method --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Stabilization of Enzymes via Immobilization --</subfield><subfield code="g">2.4.1.</subfield><subfield code="t">Multipoint Covalent Attachment --</subfield><subfield code="g">2.4.2.</subfield><subfield code="t">Multi-Subunit Immobilization --</subfield><subfield code="g">2.4.3.</subfield><subfield code="t">Chemical Modifications --</subfield><subfield code="g">3.</subfield><subfield code="t">Immobilized Enzymes --</subfield><subfield code="g">3.1.</subfield><subfield code="t">Lactose Hydrolysis --</subfield><subfield code="g">3.2.</subfield><subfield code="t">Production of Galacto-Oligosaccharides --</subfield><subfield code="g">4.</subfield><subfield code="t">Immobilized Cell Systems --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Ethanol Production --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Lactic Acid Production --</subfield><subfield code="g">5.</subfield><subfield code="t">Bioreactor Systems With Immobilized Biocatalyst --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Packed-Bed Reactors (PBRs) --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Continuous-Flow Stirred-Tank Reactors (CSTR) --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Fluidized-Bed Reactors (FBRs) --</subfield><subfield code="g">5.4.</subfield><subfield code="t">Membrane Reactors (MRs) --</subfield><subfield code="g">6.</subfield><subfield code="t">Kinetic Performance of the Immobilized Cells (IMCs) --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Kinetics of Free Cells --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Mass Transfer Considerations and the Observed Reaction Rate in an IMC System --</subfield><subfield code="g">7.</subfield><subfield code="t">Mathematical Modeling of Immobilized Cell System --</subfield><subfield code="g">8.</subfield><subfield code="t">Industrial Applications --</subfield><subfield code="g">8.1.</subfield><subfield code="t">Lactose Hydrolysis with Immobilized β-Galactosidase --</subfield><subfield code="g">8.2.</subfield><subfield code="t">Ethanol Production from Whey with Flocculated Yeasts --</subfield><subfield code="g">9.</subfield><subfield code="t">Conclusions -- --</subfield><subfield code="g">Ch. 9.</subfield><subfield code="t">Hydrogen Generation from Food Industry and Biodiesel Wastes --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Basic Principle of Dark Hydrogen Fermentation --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Hydrogen Production by Strict Anaerobes --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Hydrogen Production by Facultative Anaerobes --</subfield><subfield code="g">3.</subfield><subfield code="t">Effect of Intracellular and Extracellular Redox States on Hydrogen Production --</subfield><subfield code="g">4.</subfield><subfield code="t">Bioreactor System for High-Rate Hydrogen Production --</subfield><subfield code="g">5.</subfield><subfield code="t">Hydrogen Production from Industrial Organic Wastes --</subfield><subfield code="g">5.1.</subfield><subfield code="t">Carbohydrates --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Food Oil (Glycerol-Rich Residue Discharged after Biodiesel Manufacturing) --</subfield><subfield code="g">6.</subfield><subfield code="t">Treatment of Effluent After Dark Hydrogen Fermentation --</subfield><subfield code="g">6.1.</subfield><subfield code="t">Methane Fermentation --</subfield><subfield code="g">6.2.</subfield><subfield code="t">Photobiological Hydrogen Fermentation --</subfield><subfield code="g">7.</subfield><subfield code="t">Concluding Remarks -- --</subfield><subfield code="g">Ch. 10.</subfield><subfield code="t">Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Thermophilic Aerobic Digestion --</subfield><subfield code="g">3.</subfield><subfield code="t">Thermophilic Microorganisms --</subfield><subfield code="g">4.</subfield><subfield code="t">Bioremediation and Bio-Augmentation Strategies --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Target Wastes --</subfield><subfield code="g">4.1.1.</subfield><subfield code="t">Bioconversion of Cheese Whey --</subfield><subfield code="g">4.1.1.1.</subfield><subfield code="t">Strategy 1 Experiment --</subfield><subfield code="g">4.1.1.2.</subfield><subfield code="t">Strategy 2 Experiments --</subfield><subfield code="g">4.1.1.3.</subfield><subfield code="t">Investigations Into Reduction of Chemical Oxygen Demand During a One-Stage Process --</subfield><subfield code="g">4.1.2.</subfield><subfield code="t">Bioconversion of Grain Stillage/Distiller's Slops --</subfield><subfield code="g">4.1.3.</subfield><subfield code="t">Bioconversion of Potato Stillage/Distiller's Slops --</subfield><subfield code="g">4.1.4.</subfield><subfield code="t">Bioconversion of Potato Starch Production Wastes --</subfield><subfield code="g">4.1.5.</subfield><subfield code="t">Bioconversion of Wheat Stillage --</subfield><subfield code="g">5.</subfield><subfield code="t">A New Bioreactor Designed for Thermophilic Digestion --</subfield><subfield code="g">5.1.</subfield><subfield code="t">General Layout and Operation System --</subfield><subfield code="g">5.2.</subfield><subfield code="t">Bioreactor Concept and Description --</subfield><subfield code="g">5.3.</subfield><subfield code="t">Bioreactor Performance --</subfield><subfield code="g">6.</subfield><subfield code="t">Feed Production From Food Industry Wastes --</subfield><subfield code="g">7.</subfield><subfield code="t">Conclusions -- --</subfield><subfield code="g">Ch. 11.</subfield><subfield code="t">Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater --</subfield><subfield code="g">1.</subfield><subfield code="t">Introduction --</subfield><subfield code="g">2.</subfield><subfield code="t">Mathematical Models of Bioreactors and Biodegradation Processes --</subfield><subfield code="g">2.1.</subfield><subfield code="t">Modeling of Aerobic Biodegradation of Cheese Whey --</subfield><subfield code="g">2.1.1.</subfield><subfield code="t">Approach I --</subfield><subfield code="g">2.1.2.</subfield><subfield code="t">Approach II --</subfield><subfield code="g">2.2.</subfield><subfield code="t">Modeling of the Biodegradation of Potato Stillage/ Distiller's Slops --</subfield><subfield code="g">2.2.1.</subfield><subfield code="t">Version for Continuous Biodegradation --</subfield><subfield code="g">2.2.2.</subfield><subfield code="t">Version for Batch Biodegradation --</subfield><subfield code="g">2.2.3.</subfield><subfield code="t">Comparison of Model Output and Experimental Data --</subfield><subfield code="g">2.3.</subfield><subfield code="t">Modeling of Anaerobic Digestion (AD) --</subfield><subfield code="g">2.3.1.</subfield><subfield code="t">Case Study 1: Anaerobic Treatment of Chicken Wastes --</subfield><subfield code="g">2.3.1.1.</subfield><subfield code="t">Model Assumptions --</subfield><subfield code="g">2.3.1.2.</subfield><subfield code="t">Main Reactions Assumed in the Model --</subfield><subfield code="g">2.4.</subfield><subfield code="t">Modeling of an Autothermal Thermophilic Aerobic Digester (ATAD) --</subfield><subfield code="g">2.4.1.</subfield><subfield code="t">Mass Balance --</subfield><subfield code="g">2.4.2.</subfield><subfield code="t">Energy Balance --</subfield><subfield code="g">2.5.</subfield><subfield code="t">Modeling of Wastewater Treatment Plants (WWTPs) --</subfield><subfield code="g">2.5.1.</subfield><subfield code="t">Steady-State Models of WWTPs --</subfield><subfield code="g">3.</subfield><subfield code="t">Process Analytical Technology --</subfield><subfield code="g">4.</subfield><subfield code="t">Control Strategy Development --</subfield><subfield code="g">4.1.</subfield><subfield code="t">Fuzzy Logic Control --</subfield><subfield code="g">4.2.</subfield><subfield code="t">Control Strategy Development for Food Wastes --</subfield><subfield code="g">4.2.1.</subfield><subfield code="t">Supervisory Control Strategies --</subfield><subfield code="g">4.2.2.</subfield><subfield code="t">Physiological State Classification Strategies --</subfield><subfield code="g">4.2.3.</subfield><subfield code="t">Direct Control Strategies --</subfield><subfield code="g">4.2.4.</subfield><subfield code="t">Development of the KBCS --</subfield><subfield code="g">5.</subfield><subfield code="t">Conclusions.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">24807780</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">485168</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10256530</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn828864038 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:12Z |
institution | BVB |
isbn | 9780123919281 0123919282 |
language | English |
oclc_num | 828864038 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxvi, 312 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Elsevier : Academic Press, |
record_format | marc |
series | Food science and technology international series. |
series2 | Food science and technology international series |
spelling | Food industry wastes : assessment and recuperation of commodities / edited by Maria R. Kosseva, Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo Campus, China, Expert on the European Commission LIFE Sciences Panel, Belgium ; Colin Webb, School of Chemical Engineering & Analytical Science, University of Manchester, Manchester, UK. First edition. Amsterdam : Elsevier : Academic Press, 2013. 1 online resource (xxvi, 312 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier Food science and technology international series Includes bibliographical references and index. Food Industry Wastes: Assessment and Recuperation of Commodities presents emerging techniques and opportunities for the treatment of food wastes, the reduction of water footprint, and creating sustainable food systems. Written by a team of experts from around the world, this book will provide a key resource for implementing processes as well as giving researchers a starting point for the development of new options for the recuperation of these waste for community benefit. There were over 34 million tons of food waste generated in the US alone in 2009 - at a cost of approximately $43 billion. And while less than 3% of that waste was recovered and recycled, there is growing interest and development in finding ways to utilize this waste in ways that will not only reduce greenhouse gasses, but provide energy, and potentially provide resources for other purposes. Food waste is an area of focus for a wide range of related industries from food science to energy and engineeringThis international authoring team represents the leading edge in research and development Provides insights on leading areas of current research as well as looking toward future opportunities for reusing food waste. 880-01 Introduction: Causes and Challenges of Food Wastage -- Part I: Food Industry Wastes: Problems and Opportunities -- Chapter 1. Recent European Legislation on Management of Wastes in the Food Industry -- Chapter 2. Development of Green Production Strategies -- Chapter 3. Sources, Characterization, and Compostition of Food Industry Wastes -- Part II: Treatment of Solid Food Wastes -- Chapter 4. Use of Waste Bread to Produce Fermentation Products -- Chapter 5. Recovery of Commodities from Food Wastes Using Solid State Fermentation -- Chapter 6. Functional Food and Nutraceuticals Derived from Food Industry Wastes -- Chapter 7. Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- Part III: Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes -- Chapter 8. Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- Chapter 9. Hydrogen Generation from Food Industry and Biodiesel Wastes -- Chapter 10. Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- Chapter 11. Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- Part IV: Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater -- Chapter 12. Accounting for the Impact of Food Waste on Water Resources and Climate Change -- Chapter 13. Electrical Energy from Wineries: A New Approach Using Microbial Fuel Cells -- Chapter 14. Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology -- Part V: Assessment of Environmental Impact of Food Production and Consumption -- Chapter 15. Life Cycle Assessment Focusing on Food Industry Wastes -- Chapter 16. Food System Sustainability and the Consumer. Print version record. Food industry and trade Waste disposal. TECHNOLOGY & ENGINEERING Food Science. bisacsh Food industry and trade Waste disposal fast Kosseva, Maria R., editor. http://id.loc.gov/authorities/names/no2013041787 Webb, Colin, editor. http://id.loc.gov/authorities/names/n81064051 has work: Food industry wastes (Text) https://id.oclc.org/worldcat/entity/E39PCFxCkCcG89H4QKxD4QCBpq https://id.oclc.org/worldcat/ontology/hasWork Print version: Food industry wastes. London ; Singapore : Elsevier/Academic Press, ©2013 9780123919212 (OCoLC)828434965 Food science and technology international series. http://id.loc.gov/authorities/names/n94037846 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485168 Volltext FWS01 ZDB-4-EBA FWS_PDA_EBA https://www.sciencedirect.com/science/book/9780123919212 Volltext 505-00/(S 4.1.1. Organic Acids from Fruit Pomace -- 4.1.1.1. Lactic Acid Production -- 4.1.1.2. Citric Acid Production -- 4.1.1.3. Fatty Acid Production -- 4.1.2. Production of Ethanol -- 4.1.3. Production of Enzymes -- 4.1.3.1. α-Amylase -- 4.1.3.2. Xylanase -- 4.1.3.3. Protease -- 4.1.3.4. Laccase -- 4.1.3.5. Tannase -- 4.1.4. Production of Polysaccharides -- 4.1.5. Production of Baker's Yeast -- 4.1.6. Feed Protein -- 4.2. Production of Fine Chemicals: Aroma Compounds, Antibiotics and Pigments -- 4.2.1. Aroma Compounds -- 4.2.2. Antibiotics -- 4.2.3. Production of Pigments -- 5. Conclusions -- -- Ch. 6. Functional Food and Nutraceuticals Derived from Food Industry Wastes -- 1. Introduction -- 1.1. Definition of Nutraceuticals and Functional Food -- 2. Phenolic Compounds Derived from Fruit-and-Vegetable Processing Wastes -- 2.1. Flavonoids -- 2.2. Polyphenol Content of Grape Wine Wastes -- 2. 2. 1 Proanthocyanidins -- 2. 2. 2 Resveratrol -- 2. 2. 3 Anthocyanins -- 2.3. Polyphenols in Apple Pomace -- 3. Vegetable Flavonoids -- 3.1. Onion Flavonoids -- 3.2. Flavonols of Onions -- 3.3. Functionality of Flavonoids -- 3. 3. 1 Prevention of Atherosclerosis and Cardiovascular Disease -- 3. 3. 2 Antioxidant Activity -- 3. 3. 3 Metabolic Syndrome -- 3. 3. 4 Hormonal Activity -- 4. Coloring Agents and Antioxidants -- 4.1. Betalains -- 4.2. Lycopenes -- 5. Dietary Fibers -- 6. Sulfur-Containing Bioactive Compounds -- 6.1. Cabbage Glucosinolates -- 6.2. Methods of Processing -- 7. Extraction Processes from Food-and-Vegetable Waste -- 7.1. Extraction of Phenolic Compounds from Olive Pomace -- 7.2. Solvent and Enzyme-Aided Aqueous Extraction of Goldenberry -- 7.3. Extraction of Antioxidants from Potato Peels by Pressurized Liquids -- 7.4. Extraction of Phytochemicals from Common Vegetables -- 8. Whey as a Source of Bioactive Peptides -- 8.1. Occurrence of Bioactive Peptides in Whey and Other Dairy By-Products -- 8.2. Functionality of Bioactive Peptides -- 8.2.1. Regulation of the Gastrointestinal System -- 8.2.2. Regulation of the Immune System -- 8.2.3. Regulation of the Cardiovascular System -- 8.2.4. Regulation of the Nervous System -- 8.2.5. Antimicrobial Function -- 8.2.6. Growth Factor Activity -- 8.3. Commercial Dairy Products Containing Bioactive Peptides -- 8.4. Commercial-Scale Production -- 9. Product Development, Marketing, and Consumer Acceptance of Functional Foods -- 10. Conclusions -- -- Ch. 7. Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- 1. Introduction -- 2. Basic Principles of Anaerobic Digestion -- 2.1. Conversion Flow of Organic Matter to Methane -- 2.1.1. Disintegration and Hydrolysis -- 2.1.2. Acidogenesis -- 2.1.3. Acetogenesis (H2-producing) -- 2.1.4. Methanogenesis -- 2.2. Methane Production Potential of Organic Wastes -- 2.3. Environmental Factors Affecting Anaerobic Digestion -- 2.3.1. Temperature -- 2.3.2. pH and Alkalinity -- 2.3.3. Biological Toxic Compounds -- 3. Process Development for Anaerobic Digestion of Organic Wastes -- 3.1. Reactor Design for Anaerobic Digestion -- 3.1.1. Continuously Stirred Tank Reactor (CSTR) -- 3.1.2. Repeated Batch System -- 3.1.3. Plugflow Reactor System -- 3.2. High-Rate Methane Fermentation -- 3.2.1. UASB System -- 3.2.2. EGSB System -- 3.2.3. UAFP System -- 3.3. Multistage Systems -- 3.3.1. Hydrogen-Methane Two-Stage Fermentation System (Hy-Met Process) -- 3.3.1.1. Application to Brewery Effluent -- 3.3.1.2. Application to Bread Manufacturing Wastes -- 3.3.2. Ammonia-Methane Two-Stage System -- 4. Fertilization of Residues After Anaerobic Digestion -- 5. Conclusion -- -- III. Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes. 505-01/(S Ch. 8. Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- 1. Introduction -- 2. Methods of Immobilization -- 2.1. Definition of Immobilized Biocatalyst -- 2.2. Adsorption, Gel Entrapment, and Covalent-Binding -- 2.3. Microencapsulation -- 2.3.1. Emulsion/Interfacial Polymerization -- 2.3.2. Liquid Droplet Forming-One-Step Method -- 2.4. Stabilization of Enzymes via Immobilization -- 2.4.1. Multipoint Covalent Attachment -- 2.4.2. Multi-Subunit Immobilization -- 2.4.3. Chemical Modifications -- 3. Immobilized Enzymes -- 3.1. Lactose Hydrolysis -- 3.2. Production of Galacto-Oligosaccharides -- 4. Immobilized Cell Systems -- 4.1. Ethanol Production -- 4.2. Lactic Acid Production -- 5. Bioreactor Systems With Immobilized Biocatalyst -- 5.1. Packed-Bed Reactors (PBRs) -- 5.2. Continuous-Flow Stirred-Tank Reactors (CSTR) -- 5.3. Fluidized-Bed Reactors (FBRs) -- 5.4. Membrane Reactors (MRs) -- 6. Kinetic Performance of the Immobilized Cells (IMCs) -- 6.1. Kinetics of Free Cells -- 6.2. Mass Transfer Considerations and the Observed Reaction Rate in an IMC System -- 7. Mathematical Modeling of Immobilized Cell System -- 8. Industrial Applications -- 8.1. Lactose Hydrolysis with Immobilized β-Galactosidase -- 8.2. Ethanol Production from Whey with Flocculated Yeasts -- 9. Conclusions -- -- Ch. 9. Hydrogen Generation from Food Industry and Biodiesel Wastes -- 1. Introduction -- 2. Basic Principle of Dark Hydrogen Fermentation -- 2.1. Hydrogen Production by Strict Anaerobes -- 2.2. Hydrogen Production by Facultative Anaerobes -- 3. Effect of Intracellular and Extracellular Redox States on Hydrogen Production -- 4. Bioreactor System for High-Rate Hydrogen Production -- 5. Hydrogen Production from Industrial Organic Wastes -- 5.1. Carbohydrates -- 5.2. Food Oil (Glycerol-Rich Residue Discharged after Biodiesel Manufacturing) -- 6. Treatment of Effluent After Dark Hydrogen Fermentation -- 6.1. Methane Fermentation -- 6.2. Photobiological Hydrogen Fermentation -- 7. Concluding Remarks -- -- Ch. 10. Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- 1. Introduction -- 2. Thermophilic Aerobic Digestion -- 3. Thermophilic Microorganisms -- 4. Bioremediation and Bio-Augmentation Strategies -- 4.1. Target Wastes -- 4.1.1. Bioconversion of Cheese Whey -- 4.1.1.1. Strategy 1 Experiment -- 4.1.1.2. Strategy 2 Experiments -- 4.1.1.3. Investigations Into Reduction of Chemical Oxygen Demand During a One-Stage Process -- 4.1.2. Bioconversion of Grain Stillage/Distiller's Slops -- 4.1.3. Bioconversion of Potato Stillage/Distiller's Slops -- 4.1.4. Bioconversion of Potato Starch Production Wastes -- 4.1.5. Bioconversion of Wheat Stillage -- 5. A New Bioreactor Designed for Thermophilic Digestion -- 5.1. General Layout and Operation System -- 5.2. Bioreactor Concept and Description -- 5.3. Bioreactor Performance -- 6. Feed Production From Food Industry Wastes -- 7. Conclusions -- -- Ch. 11. Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- 1. Introduction -- 2. Mathematical Models of Bioreactors and Biodegradation Processes -- 2.1. Modeling of Aerobic Biodegradation of Cheese Whey -- 2.1.1. Approach I -- 2.1.2. Approach II -- 2.2. Modeling of the Biodegradation of Potato Stillage/ Distiller's Slops -- 2.2.1. Version for Continuous Biodegradation -- 2.2.2. Version for Batch Biodegradation -- 2.2.3. Comparison of Model Output and Experimental Data -- 2.3. Modeling of Anaerobic Digestion (AD) -- 2.3.1. Case Study 1: Anaerobic Treatment of Chicken Wastes -- 2.3.1.1. Model Assumptions -- 2.3.1.2. Main Reactions Assumed in the Model -- 2.4. Modeling of an Autothermal Thermophilic Aerobic Digester (ATAD) -- 2.4.1. Mass Balance -- 2.4.2. Energy Balance -- 2.5. Modeling of Wastewater Treatment Plants (WWTPs) -- 2.5.1. Steady-State Models of WWTPs -- 3. Process Analytical Technology -- 4. Control Strategy Development -- 4.1. Fuzzy Logic Control -- 4.2. Control Strategy Development for Food Wastes -- 4.2.1. Supervisory Control Strategies -- 4.2.2. Physiological State Classification Strategies -- 4.2.3. Direct Control Strategies -- 4.2.4. Development of the KBCS -- 5. Conclusions. |
spellingShingle | Food industry wastes : assessment and recuperation of commodities / Food science and technology international series. Introduction: Causes and Challenges of Food Wastage -- Part I: Food Industry Wastes: Problems and Opportunities -- Chapter 1. Recent European Legislation on Management of Wastes in the Food Industry -- Chapter 2. Development of Green Production Strategies -- Chapter 3. Sources, Characterization, and Compostition of Food Industry Wastes -- Part II: Treatment of Solid Food Wastes -- Chapter 4. Use of Waste Bread to Produce Fermentation Products -- Chapter 5. Recovery of Commodities from Food Wastes Using Solid State Fermentation -- Chapter 6. Functional Food and Nutraceuticals Derived from Food Industry Wastes -- Chapter 7. Manufacture of Biogas and Fertilizer from Solid Food Wastes by Means of Anaerobic Digestion -- Part III: Improved Biocatalysts and Innovative Bioreactors for Enhanced Bioprocessing of Liquid Food Wastes -- Chapter 8. Use of Immobilized Biocatalyst for Valorization of Whey Lactose -- Chapter 9. Hydrogen Generation from Food Industry and Biodiesel Wastes -- Chapter 10. Thermophilic Aerobic Bioprocessing Technologies for Food Industry Wastes and Wastewater -- Chapter 11. Modeling, Monitoring, and Process Control for Intelligent Bioprocessing of Food Industry Wastes and Wastewater -- Part IV: Assessment of Water and Carbon Footprints and Rehabilitation of Food Industry Wastewater -- Chapter 12. Accounting for the Impact of Food Waste on Water Resources and Climate Change -- Chapter 13. Electrical Energy from Wineries: A New Approach Using Microbial Fuel Cells -- Chapter 14. Electricity Generation from Food Industry Wastewater Using Microbial Fuel Cell Technology -- Part V: Assessment of Environmental Impact of Food Production and Consumption -- Chapter 15. Life Cycle Assessment Focusing on Food Industry Wastes -- Chapter 16. Food System Sustainability and the Consumer. Food industry and trade Waste disposal. TECHNOLOGY & ENGINEERING Food Science. bisacsh Food industry and trade Waste disposal fast |
title | Food industry wastes : assessment and recuperation of commodities / |
title_auth | Food industry wastes : assessment and recuperation of commodities / |
title_exact_search | Food industry wastes : assessment and recuperation of commodities / |
title_full | Food industry wastes : assessment and recuperation of commodities / edited by Maria R. Kosseva, Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo Campus, China, Expert on the European Commission LIFE Sciences Panel, Belgium ; Colin Webb, School of Chemical Engineering & Analytical Science, University of Manchester, Manchester, UK. |
title_fullStr | Food industry wastes : assessment and recuperation of commodities / edited by Maria R. Kosseva, Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo Campus, China, Expert on the European Commission LIFE Sciences Panel, Belgium ; Colin Webb, School of Chemical Engineering & Analytical Science, University of Manchester, Manchester, UK. |
title_full_unstemmed | Food industry wastes : assessment and recuperation of commodities / edited by Maria R. Kosseva, Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo Campus, China, Expert on the European Commission LIFE Sciences Panel, Belgium ; Colin Webb, School of Chemical Engineering & Analytical Science, University of Manchester, Manchester, UK. |
title_short | Food industry wastes : |
title_sort | food industry wastes assessment and recuperation of commodities |
title_sub | assessment and recuperation of commodities / |
topic | Food industry and trade Waste disposal. TECHNOLOGY & ENGINEERING Food Science. bisacsh Food industry and trade Waste disposal fast |
topic_facet | Food industry and trade Waste disposal. TECHNOLOGY & ENGINEERING Food Science. Food industry and trade Waste disposal |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=485168 https://www.sciencedirect.com/science/book/9780123919212 |
work_keys_str_mv | AT kossevamariar foodindustrywastesassessmentandrecuperationofcommodities AT webbcolin foodindustrywastesassessmentandrecuperationofcommodities |