Mathematical methods in physics /:
This new book on Mathematical Methods In Physics is intended to be used for a 2-semester course for first year MA or PhD physics graduate students, or senior undergraduates majoring in physics, engineering or other technically related fields. Emphasis has been placed on physics applications, include...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; River Edge, N.J. :
World Scientific,
©1996.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This new book on Mathematical Methods In Physics is intended to be used for a 2-semester course for first year MA or PhD physics graduate students, or senior undergraduates majoring in physics, engineering or other technically related fields. Emphasis has been placed on physics applications, included where appropriate, to complement basic theories. Applications include moment of inertia in "Tensor Analysis"; Maxwell's equations, magnetostatic, stress tensor, continuity equation and heat flow in "fields"; special and spherical harmonics in "Hilbert Space"; electrostatics, hydrodynamics and Gamma function in "Complex Variable Theory"; vibrating string, vibrating membrane and harmonic oscillator in "Ordinary Differential Equations"; age of the earth and temperature variation of the earth's surface in "Heat Conduction"; and field due to a moving point charge (Lienard-Wiechart potentials) in "Wave Equations". Subject not usually found in standard mathematical physics texts include Theory of Curves in Space in "Vector Analysis", and Retarded and Advanced D-Functions in "Wave Equations". Lastly, problem solving techniques are presented by way of appendices, comprising 75 pages of problems with their solutions. These problems provide applications as well as extensions to the theory. A useful compendium, with such excellent features, will surely make it a key reference text |
Beschreibung: | 1 online resource (xi, 464 pages) : illustrations |
ISBN: | 9789812819314 9812819312 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn828425216 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130225s1996 si a o 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCF |d DA$ |d YDXCP |d EBLCP |d DEBSZ |d IDEBK |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d STF |d M8D |d UKAHL |d OCLCQ |d LEAUB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d SXB |d OCLCQ | ||
019 | |a 828792780 |a 1086440332 | ||
020 | |a 9789812819314 |q (electronic bk.) | ||
020 | |a 9812819312 |q (electronic bk.) | ||
020 | |z 9810227604 | ||
020 | |z 9789810227609 | ||
035 | |a (OCoLC)828425216 |z (OCoLC)828792780 |z (OCoLC)1086440332 | ||
050 | 4 | |a QC20 |b .L498 1996eb | |
072 | 7 | |a SCI |x 040000 |2 bisacsh | |
082 | 7 | |a 530.1/5 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Lindenbaum, Samuel D. | |
245 | 1 | 0 | |a Mathematical methods in physics / |c Samuel D. Lindenbaum. |
260 | |a Singapore ; |a River Edge, N.J. : |b World Scientific, |c ©1996. | ||
300 | |a 1 online resource (xi, 464 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Ch. 1. Vector analysis. 1.1. Vector algebra. 1.2. Examples and applications. 1.3. Theory of curves in space -- ch. 2. Tensor analysis. 2.1. nth rank tensor. 2.2. 2nd-rank isotropic (invariant) tensor. 2.3. Contraction. 2.4. Outer product theorem. 2.5. 3rd-rank isotropic (invariant) tensor. 2.6. Examples and applications. 2.7. Geometrical representation of tensors. 2.8. Moment of inertia tensor -- ch. 3. Fields. 3.1. Tensor field. 3.2. Gauss' theorem. 3.3. Stokes' theorem. 3.4. Connectivity of space. 3.5. Helmholtz theorem. 3.6. Equivalent forms of Gauss' and Stokes' theorems. 3.7. Maxwell's equations. 3.8. Curvilinear orthogonal coordinate systems -- ch. 4. Matrix and vector algebra in N-dimensional space. 4.1. Algebra of N-dimensional complex space. 4.2. Matrix algebra. 4.3. Examples of matrices. 4.4. Tensor analysis in N-dimensional space. 4.5. Matrices in N-dimensional space. 4.6. Linear independence and completeness. | |
505 | 0 | |a Ch. 5. Hilbert space. 5.1. Definitions. 5.2. Weierstrass's theorem. 5.3. Examples of complete orthonormal sets -- ch. 6. Theory of functions of a complex variable. 6.1. Theory of complex variables. 6.2. Analytic functions. 6.3. Applications of analytic functions. 6.4. Integral calculus of complex variables. 6.5. Taylor's theorem. 6.6. Laurent theorem. 6.7. Singularities. 6.8. Liouville theorem. 6.9. Multiple-valued functions. 6.10. Theory of residues. 6.11. Analytic continuation -- ch. 7. Theory of ordinary differential equations. 7.1. Ordinary differential equations in physics. 7.2. Ordinary points and singular points. 7.3. Hermite polynomials. 7.4. Behavior of solutions near singular points. 7.5. Bessel functions -- ch. 8. Theory of partial differential equations. 8.1. Examples of field equations in physics. 8.2. Theory of characteristics -- ch. 9. Heat conduction. 9.1. Fundamental equations. 9.2. Infinite medium. 9.3. Semi-infinite medium. | |
505 | 0 | |a Ch. 10. The eigenvalue problem. 10.1. Eigenvalues and eigenfunctions. 10.2. Harmonic oscillator/free particle in a sphere. 10.3. The variational principle -- ch. 11. Wave equations. 11.1. Infinite medium. 11.2. Retarded and advanced D-functions. 11.3. Field due to a moving point charge. 11.4. Finite boundary medium. 11.5. Green's function method applied to Schrodinger's equation and to heat conduction. | |
520 | |a This new book on Mathematical Methods In Physics is intended to be used for a 2-semester course for first year MA or PhD physics graduate students, or senior undergraduates majoring in physics, engineering or other technically related fields. Emphasis has been placed on physics applications, included where appropriate, to complement basic theories. Applications include moment of inertia in "Tensor Analysis"; Maxwell's equations, magnetostatic, stress tensor, continuity equation and heat flow in "fields"; special and spherical harmonics in "Hilbert Space"; electrostatics, hydrodynamics and Gamma function in "Complex Variable Theory"; vibrating string, vibrating membrane and harmonic oscillator in "Ordinary Differential Equations"; age of the earth and temperature variation of the earth's surface in "Heat Conduction"; and field due to a moving point charge (Lienard-Wiechart potentials) in "Wave Equations". Subject not usually found in standard mathematical physics texts include Theory of Curves in Space in "Vector Analysis", and Retarded and Advanced D-Functions in "Wave Equations". Lastly, problem solving techniques are presented by way of appendices, comprising 75 pages of problems with their solutions. These problems provide applications as well as extensions to the theory. A useful compendium, with such excellent features, will surely make it a key reference text | ||
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a SCIENCE |x Physics |x Mathematical & Computational. |2 bisacsh | |
650 | 7 | |a Mathematical physics |2 fast | |
776 | 0 | 8 | |i Print version: |a Lindenbaum, Samuel D. |t Mathematical methods in physics. |d Singapore ; River Edge, N.J. : World Scientific, ©1996 |z 9810227604 |w (DLC) 96031604 |w (OCoLC)35086175 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533872 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24978410 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1126823 | ||
938 | |a EBSCOhost |b EBSC |n 533872 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis24734549 | ||
938 | |a YBP Library Services |b YANK |n 10226283 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn828425216 |
---|---|
_version_ | 1816882223029157888 |
adam_text | |
any_adam_object | |
author | Lindenbaum, Samuel D. |
author_facet | Lindenbaum, Samuel D. |
author_role | |
author_sort | Lindenbaum, Samuel D. |
author_variant | s d l sd sdl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20 .L498 1996eb |
callnumber-search | QC20 .L498 1996eb |
callnumber-sort | QC 220 L498 41996EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Ch. 1. Vector analysis. 1.1. Vector algebra. 1.2. Examples and applications. 1.3. Theory of curves in space -- ch. 2. Tensor analysis. 2.1. nth rank tensor. 2.2. 2nd-rank isotropic (invariant) tensor. 2.3. Contraction. 2.4. Outer product theorem. 2.5. 3rd-rank isotropic (invariant) tensor. 2.6. Examples and applications. 2.7. Geometrical representation of tensors. 2.8. Moment of inertia tensor -- ch. 3. Fields. 3.1. Tensor field. 3.2. Gauss' theorem. 3.3. Stokes' theorem. 3.4. Connectivity of space. 3.5. Helmholtz theorem. 3.6. Equivalent forms of Gauss' and Stokes' theorems. 3.7. Maxwell's equations. 3.8. Curvilinear orthogonal coordinate systems -- ch. 4. Matrix and vector algebra in N-dimensional space. 4.1. Algebra of N-dimensional complex space. 4.2. Matrix algebra. 4.3. Examples of matrices. 4.4. Tensor analysis in N-dimensional space. 4.5. Matrices in N-dimensional space. 4.6. Linear independence and completeness. Ch. 5. Hilbert space. 5.1. Definitions. 5.2. Weierstrass's theorem. 5.3. Examples of complete orthonormal sets -- ch. 6. Theory of functions of a complex variable. 6.1. Theory of complex variables. 6.2. Analytic functions. 6.3. Applications of analytic functions. 6.4. Integral calculus of complex variables. 6.5. Taylor's theorem. 6.6. Laurent theorem. 6.7. Singularities. 6.8. Liouville theorem. 6.9. Multiple-valued functions. 6.10. Theory of residues. 6.11. Analytic continuation -- ch. 7. Theory of ordinary differential equations. 7.1. Ordinary differential equations in physics. 7.2. Ordinary points and singular points. 7.3. Hermite polynomials. 7.4. Behavior of solutions near singular points. 7.5. Bessel functions -- ch. 8. Theory of partial differential equations. 8.1. Examples of field equations in physics. 8.2. Theory of characteristics -- ch. 9. Heat conduction. 9.1. Fundamental equations. 9.2. Infinite medium. 9.3. Semi-infinite medium. Ch. 10. The eigenvalue problem. 10.1. Eigenvalues and eigenfunctions. 10.2. Harmonic oscillator/free particle in a sphere. 10.3. The variational principle -- ch. 11. Wave equations. 11.1. Infinite medium. 11.2. Retarded and advanced D-functions. 11.3. Field due to a moving point charge. 11.4. Finite boundary medium. 11.5. Green's function method applied to Schrodinger's equation and to heat conduction. |
ctrlnum | (OCoLC)828425216 |
dewey-full | 530.1/5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1/5 |
dewey-search | 530.1/5 |
dewey-sort | 3530.1 15 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05785cam a2200517 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn828425216</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130225s1996 si a o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DA$</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">828792780</subfield><subfield code="a">1086440332</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812819314</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812819312</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9810227604</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789810227609</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)828425216</subfield><subfield code="z">(OCoLC)828792780</subfield><subfield code="z">(OCoLC)1086440332</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20</subfield><subfield code="b">.L498 1996eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">040000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">530.1/5</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lindenbaum, Samuel D.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical methods in physics /</subfield><subfield code="c">Samuel D. Lindenbaum.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">River Edge, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©1996.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 464 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Vector analysis. 1.1. Vector algebra. 1.2. Examples and applications. 1.3. Theory of curves in space -- ch. 2. Tensor analysis. 2.1. nth rank tensor. 2.2. 2nd-rank isotropic (invariant) tensor. 2.3. Contraction. 2.4. Outer product theorem. 2.5. 3rd-rank isotropic (invariant) tensor. 2.6. Examples and applications. 2.7. Geometrical representation of tensors. 2.8. Moment of inertia tensor -- ch. 3. Fields. 3.1. Tensor field. 3.2. Gauss' theorem. 3.3. Stokes' theorem. 3.4. Connectivity of space. 3.5. Helmholtz theorem. 3.6. Equivalent forms of Gauss' and Stokes' theorems. 3.7. Maxwell's equations. 3.8. Curvilinear orthogonal coordinate systems -- ch. 4. Matrix and vector algebra in N-dimensional space. 4.1. Algebra of N-dimensional complex space. 4.2. Matrix algebra. 4.3. Examples of matrices. 4.4. Tensor analysis in N-dimensional space. 4.5. Matrices in N-dimensional space. 4.6. Linear independence and completeness.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 5. Hilbert space. 5.1. Definitions. 5.2. Weierstrass's theorem. 5.3. Examples of complete orthonormal sets -- ch. 6. Theory of functions of a complex variable. 6.1. Theory of complex variables. 6.2. Analytic functions. 6.3. Applications of analytic functions. 6.4. Integral calculus of complex variables. 6.5. Taylor's theorem. 6.6. Laurent theorem. 6.7. Singularities. 6.8. Liouville theorem. 6.9. Multiple-valued functions. 6.10. Theory of residues. 6.11. Analytic continuation -- ch. 7. Theory of ordinary differential equations. 7.1. Ordinary differential equations in physics. 7.2. Ordinary points and singular points. 7.3. Hermite polynomials. 7.4. Behavior of solutions near singular points. 7.5. Bessel functions -- ch. 8. Theory of partial differential equations. 8.1. Examples of field equations in physics. 8.2. Theory of characteristics -- ch. 9. Heat conduction. 9.1. Fundamental equations. 9.2. Infinite medium. 9.3. Semi-infinite medium.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 10. The eigenvalue problem. 10.1. Eigenvalues and eigenfunctions. 10.2. Harmonic oscillator/free particle in a sphere. 10.3. The variational principle -- ch. 11. Wave equations. 11.1. Infinite medium. 11.2. Retarded and advanced D-functions. 11.3. Field due to a moving point charge. 11.4. Finite boundary medium. 11.5. Green's function method applied to Schrodinger's equation and to heat conduction.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This new book on Mathematical Methods In Physics is intended to be used for a 2-semester course for first year MA or PhD physics graduate students, or senior undergraduates majoring in physics, engineering or other technically related fields. Emphasis has been placed on physics applications, included where appropriate, to complement basic theories. Applications include moment of inertia in "Tensor Analysis"; Maxwell's equations, magnetostatic, stress tensor, continuity equation and heat flow in "fields"; special and spherical harmonics in "Hilbert Space"; electrostatics, hydrodynamics and Gamma function in "Complex Variable Theory"; vibrating string, vibrating membrane and harmonic oscillator in "Ordinary Differential Equations"; age of the earth and temperature variation of the earth's surface in "Heat Conduction"; and field due to a moving point charge (Lienard-Wiechart potentials) in "Wave Equations". Subject not usually found in standard mathematical physics texts include Theory of Curves in Space in "Vector Analysis", and Retarded and Advanced D-Functions in "Wave Equations". Lastly, problem solving techniques are presented by way of appendices, comprising 75 pages of problems with their solutions. These problems provide applications as well as extensions to the theory. A useful compendium, with such excellent features, will surely make it a key reference text</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Mathematical & Computational.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Lindenbaum, Samuel D.</subfield><subfield code="t">Mathematical methods in physics.</subfield><subfield code="d">Singapore ; River Edge, N.J. : World Scientific, ©1996</subfield><subfield code="z">9810227604</subfield><subfield code="w">(DLC) 96031604</subfield><subfield code="w">(OCoLC)35086175</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533872</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24978410</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1126823</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">533872</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis24734549</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10226283</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn828425216 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:11Z |
institution | BVB |
isbn | 9789812819314 9812819312 |
language | English |
oclc_num | 828425216 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 464 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | World Scientific, |
record_format | marc |
spelling | Lindenbaum, Samuel D. Mathematical methods in physics / Samuel D. Lindenbaum. Singapore ; River Edge, N.J. : World Scientific, ©1996. 1 online resource (xi, 464 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. Ch. 1. Vector analysis. 1.1. Vector algebra. 1.2. Examples and applications. 1.3. Theory of curves in space -- ch. 2. Tensor analysis. 2.1. nth rank tensor. 2.2. 2nd-rank isotropic (invariant) tensor. 2.3. Contraction. 2.4. Outer product theorem. 2.5. 3rd-rank isotropic (invariant) tensor. 2.6. Examples and applications. 2.7. Geometrical representation of tensors. 2.8. Moment of inertia tensor -- ch. 3. Fields. 3.1. Tensor field. 3.2. Gauss' theorem. 3.3. Stokes' theorem. 3.4. Connectivity of space. 3.5. Helmholtz theorem. 3.6. Equivalent forms of Gauss' and Stokes' theorems. 3.7. Maxwell's equations. 3.8. Curvilinear orthogonal coordinate systems -- ch. 4. Matrix and vector algebra in N-dimensional space. 4.1. Algebra of N-dimensional complex space. 4.2. Matrix algebra. 4.3. Examples of matrices. 4.4. Tensor analysis in N-dimensional space. 4.5. Matrices in N-dimensional space. 4.6. Linear independence and completeness. Ch. 5. Hilbert space. 5.1. Definitions. 5.2. Weierstrass's theorem. 5.3. Examples of complete orthonormal sets -- ch. 6. Theory of functions of a complex variable. 6.1. Theory of complex variables. 6.2. Analytic functions. 6.3. Applications of analytic functions. 6.4. Integral calculus of complex variables. 6.5. Taylor's theorem. 6.6. Laurent theorem. 6.7. Singularities. 6.8. Liouville theorem. 6.9. Multiple-valued functions. 6.10. Theory of residues. 6.11. Analytic continuation -- ch. 7. Theory of ordinary differential equations. 7.1. Ordinary differential equations in physics. 7.2. Ordinary points and singular points. 7.3. Hermite polynomials. 7.4. Behavior of solutions near singular points. 7.5. Bessel functions -- ch. 8. Theory of partial differential equations. 8.1. Examples of field equations in physics. 8.2. Theory of characteristics -- ch. 9. Heat conduction. 9.1. Fundamental equations. 9.2. Infinite medium. 9.3. Semi-infinite medium. Ch. 10. The eigenvalue problem. 10.1. Eigenvalues and eigenfunctions. 10.2. Harmonic oscillator/free particle in a sphere. 10.3. The variational principle -- ch. 11. Wave equations. 11.1. Infinite medium. 11.2. Retarded and advanced D-functions. 11.3. Field due to a moving point charge. 11.4. Finite boundary medium. 11.5. Green's function method applied to Schrodinger's equation and to heat conduction. This new book on Mathematical Methods In Physics is intended to be used for a 2-semester course for first year MA or PhD physics graduate students, or senior undergraduates majoring in physics, engineering or other technically related fields. Emphasis has been placed on physics applications, included where appropriate, to complement basic theories. Applications include moment of inertia in "Tensor Analysis"; Maxwell's equations, magnetostatic, stress tensor, continuity equation and heat flow in "fields"; special and spherical harmonics in "Hilbert Space"; electrostatics, hydrodynamics and Gamma function in "Complex Variable Theory"; vibrating string, vibrating membrane and harmonic oscillator in "Ordinary Differential Equations"; age of the earth and temperature variation of the earth's surface in "Heat Conduction"; and field due to a moving point charge (Lienard-Wiechart potentials) in "Wave Equations". Subject not usually found in standard mathematical physics texts include Theory of Curves in Space in "Vector Analysis", and Retarded and Advanced D-Functions in "Wave Equations". Lastly, problem solving techniques are presented by way of appendices, comprising 75 pages of problems with their solutions. These problems provide applications as well as extensions to the theory. A useful compendium, with such excellent features, will surely make it a key reference text Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Mathematical physics fast Print version: Lindenbaum, Samuel D. Mathematical methods in physics. Singapore ; River Edge, N.J. : World Scientific, ©1996 9810227604 (DLC) 96031604 (OCoLC)35086175 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533872 Volltext |
spellingShingle | Lindenbaum, Samuel D. Mathematical methods in physics / Ch. 1. Vector analysis. 1.1. Vector algebra. 1.2. Examples and applications. 1.3. Theory of curves in space -- ch. 2. Tensor analysis. 2.1. nth rank tensor. 2.2. 2nd-rank isotropic (invariant) tensor. 2.3. Contraction. 2.4. Outer product theorem. 2.5. 3rd-rank isotropic (invariant) tensor. 2.6. Examples and applications. 2.7. Geometrical representation of tensors. 2.8. Moment of inertia tensor -- ch. 3. Fields. 3.1. Tensor field. 3.2. Gauss' theorem. 3.3. Stokes' theorem. 3.4. Connectivity of space. 3.5. Helmholtz theorem. 3.6. Equivalent forms of Gauss' and Stokes' theorems. 3.7. Maxwell's equations. 3.8. Curvilinear orthogonal coordinate systems -- ch. 4. Matrix and vector algebra in N-dimensional space. 4.1. Algebra of N-dimensional complex space. 4.2. Matrix algebra. 4.3. Examples of matrices. 4.4. Tensor analysis in N-dimensional space. 4.5. Matrices in N-dimensional space. 4.6. Linear independence and completeness. Ch. 5. Hilbert space. 5.1. Definitions. 5.2. Weierstrass's theorem. 5.3. Examples of complete orthonormal sets -- ch. 6. Theory of functions of a complex variable. 6.1. Theory of complex variables. 6.2. Analytic functions. 6.3. Applications of analytic functions. 6.4. Integral calculus of complex variables. 6.5. Taylor's theorem. 6.6. Laurent theorem. 6.7. Singularities. 6.8. Liouville theorem. 6.9. Multiple-valued functions. 6.10. Theory of residues. 6.11. Analytic continuation -- ch. 7. Theory of ordinary differential equations. 7.1. Ordinary differential equations in physics. 7.2. Ordinary points and singular points. 7.3. Hermite polynomials. 7.4. Behavior of solutions near singular points. 7.5. Bessel functions -- ch. 8. Theory of partial differential equations. 8.1. Examples of field equations in physics. 8.2. Theory of characteristics -- ch. 9. Heat conduction. 9.1. Fundamental equations. 9.2. Infinite medium. 9.3. Semi-infinite medium. Ch. 10. The eigenvalue problem. 10.1. Eigenvalues and eigenfunctions. 10.2. Harmonic oscillator/free particle in a sphere. 10.3. The variational principle -- ch. 11. Wave equations. 11.1. Infinite medium. 11.2. Retarded and advanced D-functions. 11.3. Field due to a moving point charge. 11.4. Finite boundary medium. 11.5. Green's function method applied to Schrodinger's equation and to heat conduction. Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Mathematical physics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85082129 |
title | Mathematical methods in physics / |
title_auth | Mathematical methods in physics / |
title_exact_search | Mathematical methods in physics / |
title_full | Mathematical methods in physics / Samuel D. Lindenbaum. |
title_fullStr | Mathematical methods in physics / Samuel D. Lindenbaum. |
title_full_unstemmed | Mathematical methods in physics / Samuel D. Lindenbaum. |
title_short | Mathematical methods in physics / |
title_sort | mathematical methods in physics |
topic | Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Physique mathématique. SCIENCE Physics Mathematical & Computational. bisacsh Mathematical physics fast |
topic_facet | Mathematical physics. Physique mathématique. SCIENCE Physics Mathematical & Computational. Mathematical physics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=533872 |
work_keys_str_mv | AT lindenbaumsamueld mathematicalmethodsinphysics |