The Goldbach conjecture /:
"This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English Multiple |
Veröffentlicht: |
New Jersey :
World Scientific,
©2002.
|
Ausgabe: | 2nd ed. |
Schriftenreihe: | Series in pure mathematics.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover |
Beschreibung: | "All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed |
Beschreibung: | 1 online resource (xi, 329 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 309-329). |
ISBN: | 9789812776600 9812776605 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn827947371 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130218s2002 njua ob 000 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d IDEBK |d E7B |d OCLCF |d OCLCQ |d YDXCP |d OCLCQ |d AGLDB |d COO |d OCLCQ |d VTS |d REC |d STF |d LEAUB |d OCLCO |d AU@ |d OCLCO |d M8D |d UKAHL |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 666958773 | ||
020 | |a 9789812776600 |q (electronic bk.) | ||
020 | |a 9812776605 |q (electronic bk.) | ||
020 | |z 9812381597 | ||
020 | |z 9789812381590 | ||
035 | |a (OCoLC)827947371 |z (OCoLC)666958773 | ||
041 | 1 | |a eng |h mul | |
050 | 4 | |a QA241.G629 2002 | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512/.7 |2 22 | |
084 | |a SK 180 |2 rvk | ||
049 | |a MAIN | ||
245 | 0 | 4 | |a The Goldbach conjecture / |c [edited by] Yuan Wang. |
250 | |a 2nd ed. | ||
260 | |a New Jersey : |b World Scientific, |c ©2002. | ||
300 | |a 1 online resource (xi, 329 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Series in pure mathematics ; |v v. 4 | |
500 | |a "All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed | ||
504 | |a Includes bibliographical references (pages 309-329). | ||
505 | 0 | |a I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- 21. A new mean value theorem and its applications / C.D. Pan. | |
520 | |a "This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Goldbach conjecture. |0 http://id.loc.gov/authorities/subjects/sh97007184 | |
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 0 | |a Numbers, Prime. |0 http://id.loc.gov/authorities/subjects/sh85093218 | |
650 | 6 | |a Conjecture de Goldbach. | |
650 | 6 | |a Théorie des nombres. | |
650 | 6 | |a Nombres premiers. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 7 | |a Goldbach conjecture |2 fast | |
650 | 7 | |a Number theory |2 fast | |
650 | 7 | |a Numbers, Prime |2 fast | |
650 | 7 | |a Goldbach-Problem |2 gnd |0 http://d-nb.info/gnd/4157823-5 | |
700 | 1 | |a Wang, Yuan, |d 1930- |1 https://id.oclc.org/worldcat/entity/E39PBJgCHqPfgdDhjkCdYHH9jC |0 http://id.loc.gov/authorities/names/n90718695 | |
758 | |i has work: |a Goldbach conjecture (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGBcw3fmCfHPbJRRWFhHQ3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Goldbach conjecture. |b 2nd ed. |d New Jersey : World Scientific, ©2002 |z 9812381597 |w (DLC) 2003268597 |w (OCoLC)51533750 |
830 | 0 | |a Series in pure mathematics. |0 http://id.loc.gov/authorities/names/n84711710 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514311 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684659 | ||
938 | |a ebrary |b EBRY |n ebr10714046 | ||
938 | |a EBSCOhost |b EBSC |n 514311 | ||
938 | |a YBP Library Services |b YANK |n 9966162 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn827947371 |
---|---|
_version_ | 1816882222326611968 |
adam_text | |
any_adam_object | |
author2 | Wang, Yuan, 1930- |
author2_role | |
author2_variant | y w yw |
author_GND | http://id.loc.gov/authorities/names/n90718695 |
author_facet | Wang, Yuan, 1930- |
author_sort | Wang, Yuan, 1930- |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241.G629 2002 |
callnumber-search | QA241.G629 2002 |
callnumber-sort | QA 3241 G629 42002 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
collection | ZDB-4-EBA |
contents | I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- 21. A new mean value theorem and its applications / C.D. Pan. |
ctrlnum | (OCoLC)827947371 |
dewey-full | 512/.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.7 |
dewey-search | 512/.7 |
dewey-sort | 3512 17 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05496cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn827947371</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130218s2002 njua ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">LEAUB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">666958773</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812776600</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812776605</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812381597</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812381590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)827947371</subfield><subfield code="z">(OCoLC)666958773</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">mul</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA241.G629 2002</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.7</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="4"><subfield code="a">The Goldbach conjecture /</subfield><subfield code="c">[edited by] Yuan Wang.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New Jersey :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 329 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in pure mathematics ;</subfield><subfield code="v">v. 4</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 309-329).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- 21. A new mean value theorem and its applications / C.D. Pan.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Goldbach conjecture.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97007184</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Numbers, Prime.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093218</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Conjecture de Goldbach.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nombres premiers.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Goldbach conjecture</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numbers, Prime</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Goldbach-Problem</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4157823-5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuan,</subfield><subfield code="d">1930-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJgCHqPfgdDhjkCdYHH9jC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n90718695</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Goldbach conjecture (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGBcw3fmCfHPbJRRWFhHQ3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Goldbach conjecture.</subfield><subfield code="b">2nd ed.</subfield><subfield code="d">New Jersey : World Scientific, ©2002</subfield><subfield code="z">9812381597</subfield><subfield code="w">(DLC) 2003268597</subfield><subfield code="w">(OCoLC)51533750</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in pure mathematics.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84711710</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514311</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684659</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10714046</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">514311</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9966162</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn827947371 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:11Z |
institution | BVB |
isbn | 9789812776600 9812776605 |
language | English Multiple |
oclc_num | 827947371 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 329 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | World Scientific, |
record_format | marc |
series | Series in pure mathematics. |
series2 | Series in pure mathematics ; |
spelling | The Goldbach conjecture / [edited by] Yuan Wang. 2nd ed. New Jersey : World Scientific, ©2002. 1 online resource (xi, 329 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Series in pure mathematics ; v. 4 "All papers in Chinese, French, German and Russian have been translated into English"--Pref. to the 1st ed Includes bibliographical references (pages 309-329). I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- 21. A new mean value theorem and its applications / C.D. Pan. "This book provides a detailed description of a most important unsolved mathematical problem - the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920's. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."--Book cover Print version record. Goldbach conjecture. http://id.loc.gov/authorities/subjects/sh97007184 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Numbers, Prime. http://id.loc.gov/authorities/subjects/sh85093218 Conjecture de Goldbach. Théorie des nombres. Nombres premiers. MATHEMATICS Number Theory. bisacsh Goldbach conjecture fast Number theory fast Numbers, Prime fast Goldbach-Problem gnd http://d-nb.info/gnd/4157823-5 Wang, Yuan, 1930- https://id.oclc.org/worldcat/entity/E39PBJgCHqPfgdDhjkCdYHH9jC http://id.loc.gov/authorities/names/n90718695 has work: Goldbach conjecture (Text) https://id.oclc.org/worldcat/entity/E39PCGBcw3fmCfHPbJRRWFhHQ3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Goldbach conjecture. 2nd ed. New Jersey : World Scientific, ©2002 9812381597 (DLC) 2003268597 (OCoLC)51533750 Series in pure mathematics. http://id.loc.gov/authorities/names/n84711710 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514311 Volltext |
spellingShingle | The Goldbach conjecture / Series in pure mathematics. I. Representation of An Odd Number as the Sum of Three Primes -- 1. Some problems of "partitio numerorum"; III: on the expression of a number as a sum of primes / G.H. Hardy & J.E. Littlewood -- 2. Representation of an odd number as a sum of three primes / I.M. Vinogradov -- 3. A new proof of the Goldbach-Vinogradov theorem / Ju. V. Linnik -- 4. A new proof on the three primes theorem / C.B. Pan -- 5. An elementary method in prime number theory /R. C. Vaughan -- 6. A complete Vinogradov 3-primes theorem under the Riemann hypothesis / J.M. Deshouillers, G. Effinger, H. Te Riele & D. Zinoviev --- II. Representation of An Even Number as the Sum of Two Almost Primes (elementary approach) -- 7. The sieve of Eratosthenes and the theorem of Goldbach / V. Brun -- 8. New improvements in the method of the sieve of Eratosthenes /A.A. Buchstab -- 9. On prime divisors of polynomials / P. Kuhn -- 10. On an elementary method in the theory of primes / A. Selberg -- 11. On the representation of large even number as a sum of two almost primes / Y. Wang -- 12. Lectures on sieves / A. Selberg --- III. Representation of an Even Number as the Sum of a Prime and an Almost Prime -- 13. On the representation of an even number as the sum of a prime and an almost prime / A. Renyi -- 14. On the representation of large integer as a sum of a prime and an almost prime / Y. Wang -- 15. On representation of even number as the sum of a prime and an almost prime / C.D. Pan -- 16. The "density" of the zeros of Dirichlet L-series and the problem of the sum of primes and "near primes" / M.B. Barban -- 17. New results in the investigation of the Goldbach-Euler problem and the problem of prime pairs /A.A. Buchstab -- 18. The density hypothesis for Dirichlet L-series / A.I. Vinogradov -- 19. On the large sieve / E. Bombieri -- 20. On the representation of a large even integer as the sum of a prime and the product of at most two primes / J.R. Chen -- 21. A new mean value theorem and its applications / C.D. Pan. Goldbach conjecture. http://id.loc.gov/authorities/subjects/sh97007184 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Numbers, Prime. http://id.loc.gov/authorities/subjects/sh85093218 Conjecture de Goldbach. Théorie des nombres. Nombres premiers. MATHEMATICS Number Theory. bisacsh Goldbach conjecture fast Number theory fast Numbers, Prime fast Goldbach-Problem gnd http://d-nb.info/gnd/4157823-5 |
subject_GND | http://id.loc.gov/authorities/subjects/sh97007184 http://id.loc.gov/authorities/subjects/sh85093222 http://id.loc.gov/authorities/subjects/sh85093218 http://d-nb.info/gnd/4157823-5 |
title | The Goldbach conjecture / |
title_auth | The Goldbach conjecture / |
title_exact_search | The Goldbach conjecture / |
title_full | The Goldbach conjecture / [edited by] Yuan Wang. |
title_fullStr | The Goldbach conjecture / [edited by] Yuan Wang. |
title_full_unstemmed | The Goldbach conjecture / [edited by] Yuan Wang. |
title_short | The Goldbach conjecture / |
title_sort | goldbach conjecture |
topic | Goldbach conjecture. http://id.loc.gov/authorities/subjects/sh97007184 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Numbers, Prime. http://id.loc.gov/authorities/subjects/sh85093218 Conjecture de Goldbach. Théorie des nombres. Nombres premiers. MATHEMATICS Number Theory. bisacsh Goldbach conjecture fast Number theory fast Numbers, Prime fast Goldbach-Problem gnd http://d-nb.info/gnd/4157823-5 |
topic_facet | Goldbach conjecture. Number theory. Numbers, Prime. Conjecture de Goldbach. Théorie des nombres. Nombres premiers. MATHEMATICS Number Theory. Goldbach conjecture Number theory Numbers, Prime Goldbach-Problem |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514311 |
work_keys_str_mv | AT wangyuan thegoldbachconjecture AT wangyuan goldbachconjecture |