Modular forms :: a classical and computational introduction /
"This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to such diverse subjects as the theory of qu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London ; Hackensack, NJ :
Imperial College Press,
©2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to such diverse subjects as the theory of quadratic forms, the proof of Fermat's last theorem and the approximation of pi. It provides a balanced overview of both the theoretical and computational sides of the subject, allowing a variety of courses to be taught from it."--Jacket |
Beschreibung: | "This book is based on notes for lectures given at the Mathematical Institute at the University of Oxford ... 2004-2007"--Introduction |
Beschreibung: | 1 online resource (xii, 224 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 205-216) and index. |
ISBN: | 9781848162143 1848162146 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn827947324 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130218s2008 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d M6U |d E7B |d DEBSZ |d IDEBK |d YDXCP |d STF |d OCLCQ |d LOA |d JBG |d AGLDB |d MOR |d CCO |d PIFAG |d MERUC |d OCLCQ |d ZCU |d COO |d U3W |d WRM |d OCLCQ |d VTS |d NRAMU |d ICG |d INT |d REC |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d UKCRE |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCL | ||
015 | |a GBA8C5420 |2 bnb | ||
016 | 7 | |a 014747066 |2 Uk | |
019 | |a 696629423 |a 960208206 |a 961668817 |a 962577913 |a 965997229 |a 988445869 |a 991997931 |a 1037712346 |a 1038579558 |a 1045477719 |a 1055385554 |a 1066492044 |a 1081235483 |a 1086537514 |a 1153533492 |a 1228610612 | ||
020 | |a 9781848162143 |q (electronic bk.) | ||
020 | |a 1848162146 |q (electronic bk.) | ||
020 | |z 1848162138 | ||
020 | |z 9781848162136 | ||
035 | |a (OCoLC)827947324 |z (OCoLC)696629423 |z (OCoLC)960208206 |z (OCoLC)961668817 |z (OCoLC)962577913 |z (OCoLC)965997229 |z (OCoLC)988445869 |z (OCoLC)991997931 |z (OCoLC)1037712346 |z (OCoLC)1038579558 |z (OCoLC)1045477719 |z (OCoLC)1055385554 |z (OCoLC)1066492044 |z (OCoLC)1081235483 |z (OCoLC)1086537514 |z (OCoLC)1153533492 |z (OCoLC)1228610612 | ||
050 | 4 | |a QA243 |b .K54 2008eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
082 | 7 | |a 512.73 |2 22 | |
084 | |a 31.23 |2 bcl | ||
084 | |a *11-01 |2 msc | ||
084 | |a 11-02 |2 msc | ||
084 | |a 11F11 |2 msc | ||
084 | |a 11F12 |2 msc | ||
084 | |a 11F85 |2 msc | ||
084 | |a 11F03 |2 msc | ||
084 | |a 11Y99 |2 msc | ||
084 | |a 30F35 |2 msc | ||
084 | |a SK 180 |2 rvk | ||
084 | |a 17,1 |2 ssgn | ||
049 | |a MAIN | ||
100 | 1 | |a Kilford, L. J. P. |q (Lloyd James Peter) |1 https://id.oclc.org/worldcat/entity/E39PCjHPFP4x4KC7h3j3m387VC |0 http://id.loc.gov/authorities/names/no2008168688 | |
245 | 1 | 0 | |a Modular forms : |b a classical and computational introduction / |c L.J.P. Kilford. |
260 | |a London ; |a Hackensack, NJ : |b Imperial College Press, |c ©2008. | ||
300 | |a 1 online resource (xii, 224 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a "This book is based on notes for lectures given at the Mathematical Institute at the University of Oxford ... 2004-2007"--Introduction | ||
504 | |a Includes bibliographical references (pages 205-216) and index. | ||
520 | 1 | |a "This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to such diverse subjects as the theory of quadratic forms, the proof of Fermat's last theorem and the approximation of pi. It provides a balanced overview of both the theoretical and computational sides of the subject, allowing a variety of courses to be taught from it."--Jacket | |
588 | 0 | |a Print version record. | |
505 | 0 | |a 1. Historical overview. 1.1. 18th century -- a prologue. 1.2. 19th century -- the classical period. 1.3. Early 20th century -- arithmetic applications. 1.4. Later 20th century -- the link to elliptic curves. 1.5. The 21st century -- the Langlands program -- 2. Introduction to modular forms. 2.1. Modular forms for [symbol]. 2.2. Eisenstein series for the full modular group. 2.3. Computing Fourier expansions of Eisenstein series. 2.4. Congruence subgroups. 2.5. Fundamental domains. 2.6. Modular forms for congruence subgroups. 2.7. Eisenstein series for congruence subgroups. 2.8. Derivatives of modular forms. 2.9. Exercises -- 3. Results on finite-dimensionality. 3.1. Spaces of modular forms are finite-dimensional. 3.2. Explicit formulae for the dimensions of spaces of modular forms. 3.3. The Sturm bound. 3.4. Exercises -- 4. The arithmetic of modular forms. 4.1. Hecke operators. 4.2. Bases of eigenforms. 4.3. Oldforms and newforms. 4.4. Exercises -- 5. Applications of modular forms. 5.1. Modular functions. 5.2. [symbol]-products and [symbol]-quotients. 5.3. The arithmetric of the [symbol]-invariant. 5.4. Applications of the modular function [symbol]. 5.5. Identities of series and products. 5.6. The Ramanujan-Petersson conjecture. 5.7. Elliptic curves and modular forms. 5.8. Theta functions and their applications. 5.9. CM modular forms. 5.10. Lacunary modular forms. 5.11. Exercises -- 6. Modular forms in characteristic [symbol]. 6.1. Classical treatment. 6.2. Galois representations attached to mod [symbol] modular forms. 6.3. Katz modular forms. 6.4. The Sturm bound in characteristic [symbol]. 6.5. Computations with mod [symbol] modular forms. 6.6. Exercises -- 7. Computing with modular forms. 7.1. Historical introduction to computations in number theory. 7.2. MAGMA. 7.3. SAGE. 7.4. PARI and other systems. 7.5. Discussion of computation. 7.6. Exercises. | |
650 | 0 | |a Forms, Modular |x Data processing. | |
650 | 0 | |a Algebraic spaces |x Data processing. | |
650 | 6 | |a Formes modulaires |x Informatique. | |
650 | 6 | |a Espaces algébriques |x Informatique. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
758 | |i has work: |a Modular forms (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGpywfD8Rxj7F3TRPqkPXq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Kilford, L.J.P. (Lloyd James Peter). |t Modular forms. |d London ; Hackensack, NJ : Imperial College Press, ©2008 |z 1848162138 |w (DLC) 2008301117 |w (OCoLC)234380364 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516755 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24682584 | ||
938 | |a ebrary |b EBRY |n ebr10688081 | ||
938 | |a EBSCOhost |b EBSC |n 516755 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis26007339 | ||
938 | |a YBP Library Services |b YANK |n 9965747 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn827947324 |
---|---|
_version_ | 1816882222318223360 |
adam_text | |
any_adam_object | |
author | Kilford, L. J. P. (Lloyd James Peter) |
author_GND | http://id.loc.gov/authorities/names/no2008168688 |
author_facet | Kilford, L. J. P. (Lloyd James Peter) |
author_role | |
author_sort | Kilford, L. J. P. |
author_variant | l j p k ljp ljpk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA243 |
callnumber-raw | QA243 .K54 2008eb |
callnumber-search | QA243 .K54 2008eb |
callnumber-sort | QA 3243 K54 42008EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
collection | ZDB-4-EBA |
contents | 1. Historical overview. 1.1. 18th century -- a prologue. 1.2. 19th century -- the classical period. 1.3. Early 20th century -- arithmetic applications. 1.4. Later 20th century -- the link to elliptic curves. 1.5. The 21st century -- the Langlands program -- 2. Introduction to modular forms. 2.1. Modular forms for [symbol]. 2.2. Eisenstein series for the full modular group. 2.3. Computing Fourier expansions of Eisenstein series. 2.4. Congruence subgroups. 2.5. Fundamental domains. 2.6. Modular forms for congruence subgroups. 2.7. Eisenstein series for congruence subgroups. 2.8. Derivatives of modular forms. 2.9. Exercises -- 3. Results on finite-dimensionality. 3.1. Spaces of modular forms are finite-dimensional. 3.2. Explicit formulae for the dimensions of spaces of modular forms. 3.3. The Sturm bound. 3.4. Exercises -- 4. The arithmetic of modular forms. 4.1. Hecke operators. 4.2. Bases of eigenforms. 4.3. Oldforms and newforms. 4.4. Exercises -- 5. Applications of modular forms. 5.1. Modular functions. 5.2. [symbol]-products and [symbol]-quotients. 5.3. The arithmetric of the [symbol]-invariant. 5.4. Applications of the modular function [symbol]. 5.5. Identities of series and products. 5.6. The Ramanujan-Petersson conjecture. 5.7. Elliptic curves and modular forms. 5.8. Theta functions and their applications. 5.9. CM modular forms. 5.10. Lacunary modular forms. 5.11. Exercises -- 6. Modular forms in characteristic [symbol]. 6.1. Classical treatment. 6.2. Galois representations attached to mod [symbol] modular forms. 6.3. Katz modular forms. 6.4. The Sturm bound in characteristic [symbol]. 6.5. Computations with mod [symbol] modular forms. 6.6. Exercises -- 7. Computing with modular forms. 7.1. Historical introduction to computations in number theory. 7.2. MAGMA. 7.3. SAGE. 7.4. PARI and other systems. 7.5. Discussion of computation. 7.6. Exercises. |
ctrlnum | (OCoLC)827947324 |
dewey-full | 512.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.73 |
dewey-search | 512.73 |
dewey-sort | 3512.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05907cam a2200697 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn827947324</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130218s2008 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">M6U</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">COO</subfield><subfield code="d">U3W</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">REC</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8C5420</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">014747066</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">696629423</subfield><subfield code="a">960208206</subfield><subfield code="a">961668817</subfield><subfield code="a">962577913</subfield><subfield code="a">965997229</subfield><subfield code="a">988445869</subfield><subfield code="a">991997931</subfield><subfield code="a">1037712346</subfield><subfield code="a">1038579558</subfield><subfield code="a">1045477719</subfield><subfield code="a">1055385554</subfield><subfield code="a">1066492044</subfield><subfield code="a">1081235483</subfield><subfield code="a">1086537514</subfield><subfield code="a">1153533492</subfield><subfield code="a">1228610612</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848162143</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848162146</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1848162138</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781848162136</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)827947324</subfield><subfield code="z">(OCoLC)696629423</subfield><subfield code="z">(OCoLC)960208206</subfield><subfield code="z">(OCoLC)961668817</subfield><subfield code="z">(OCoLC)962577913</subfield><subfield code="z">(OCoLC)965997229</subfield><subfield code="z">(OCoLC)988445869</subfield><subfield code="z">(OCoLC)991997931</subfield><subfield code="z">(OCoLC)1037712346</subfield><subfield code="z">(OCoLC)1038579558</subfield><subfield code="z">(OCoLC)1045477719</subfield><subfield code="z">(OCoLC)1055385554</subfield><subfield code="z">(OCoLC)1066492044</subfield><subfield code="z">(OCoLC)1081235483</subfield><subfield code="z">(OCoLC)1086537514</subfield><subfield code="z">(OCoLC)1153533492</subfield><subfield code="z">(OCoLC)1228610612</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA243</subfield><subfield code="b">.K54 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.23</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*11-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11F11</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11F12</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11F85</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11F03</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11Y99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30F35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kilford, L. J. P.</subfield><subfield code="q">(Lloyd James Peter)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHPFP4x4KC7h3j3m387VC</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2008168688</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modular forms :</subfield><subfield code="b">a classical and computational introduction /</subfield><subfield code="c">L.J.P. Kilford.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 224 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"This book is based on notes for lectures given at the Mathematical Institute at the University of Oxford ... 2004-2007"--Introduction</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 205-216) and index.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to such diverse subjects as the theory of quadratic forms, the proof of Fermat's last theorem and the approximation of pi. It provides a balanced overview of both the theoretical and computational sides of the subject, allowing a variety of courses to be taught from it."--Jacket</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Historical overview. 1.1. 18th century -- a prologue. 1.2. 19th century -- the classical period. 1.3. Early 20th century -- arithmetic applications. 1.4. Later 20th century -- the link to elliptic curves. 1.5. The 21st century -- the Langlands program -- 2. Introduction to modular forms. 2.1. Modular forms for [symbol]. 2.2. Eisenstein series for the full modular group. 2.3. Computing Fourier expansions of Eisenstein series. 2.4. Congruence subgroups. 2.5. Fundamental domains. 2.6. Modular forms for congruence subgroups. 2.7. Eisenstein series for congruence subgroups. 2.8. Derivatives of modular forms. 2.9. Exercises -- 3. Results on finite-dimensionality. 3.1. Spaces of modular forms are finite-dimensional. 3.2. Explicit formulae for the dimensions of spaces of modular forms. 3.3. The Sturm bound. 3.4. Exercises -- 4. The arithmetic of modular forms. 4.1. Hecke operators. 4.2. Bases of eigenforms. 4.3. Oldforms and newforms. 4.4. Exercises -- 5. Applications of modular forms. 5.1. Modular functions. 5.2. [symbol]-products and [symbol]-quotients. 5.3. The arithmetric of the [symbol]-invariant. 5.4. Applications of the modular function [symbol]. 5.5. Identities of series and products. 5.6. The Ramanujan-Petersson conjecture. 5.7. Elliptic curves and modular forms. 5.8. Theta functions and their applications. 5.9. CM modular forms. 5.10. Lacunary modular forms. 5.11. Exercises -- 6. Modular forms in characteristic [symbol]. 6.1. Classical treatment. 6.2. Galois representations attached to mod [symbol] modular forms. 6.3. Katz modular forms. 6.4. The Sturm bound in characteristic [symbol]. 6.5. Computations with mod [symbol] modular forms. 6.6. Exercises -- 7. Computing with modular forms. 7.1. Historical introduction to computations in number theory. 7.2. MAGMA. 7.3. SAGE. 7.4. PARI and other systems. 7.5. Discussion of computation. 7.6. Exercises.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Forms, Modular</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebraic spaces</subfield><subfield code="x">Data processing.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Formes modulaires</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces algébriques</subfield><subfield code="x">Informatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Modular forms (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGpywfD8Rxj7F3TRPqkPXq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Kilford, L.J.P. (Lloyd James Peter).</subfield><subfield code="t">Modular forms.</subfield><subfield code="d">London ; Hackensack, NJ : Imperial College Press, ©2008</subfield><subfield code="z">1848162138</subfield><subfield code="w">(DLC) 2008301117</subfield><subfield code="w">(OCoLC)234380364</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516755</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24682584</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10688081</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">516755</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis26007339</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9965747</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn827947324 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:11Z |
institution | BVB |
isbn | 9781848162143 1848162146 |
language | English |
oclc_num | 827947324 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 224 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Imperial College Press, |
record_format | marc |
spelling | Kilford, L. J. P. (Lloyd James Peter) https://id.oclc.org/worldcat/entity/E39PCjHPFP4x4KC7h3j3m387VC http://id.loc.gov/authorities/names/no2008168688 Modular forms : a classical and computational introduction / L.J.P. Kilford. London ; Hackensack, NJ : Imperial College Press, ©2008. 1 online resource (xii, 224 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier "This book is based on notes for lectures given at the Mathematical Institute at the University of Oxford ... 2004-2007"--Introduction Includes bibliographical references (pages 205-216) and index. "This book presents a graduate student-level introduction to the classical theory of modular forms and computations involving modular forms, including modular functions and the theory of Hecke operators. It also includes applications of modular forms to such diverse subjects as the theory of quadratic forms, the proof of Fermat's last theorem and the approximation of pi. It provides a balanced overview of both the theoretical and computational sides of the subject, allowing a variety of courses to be taught from it."--Jacket Print version record. 1. Historical overview. 1.1. 18th century -- a prologue. 1.2. 19th century -- the classical period. 1.3. Early 20th century -- arithmetic applications. 1.4. Later 20th century -- the link to elliptic curves. 1.5. The 21st century -- the Langlands program -- 2. Introduction to modular forms. 2.1. Modular forms for [symbol]. 2.2. Eisenstein series for the full modular group. 2.3. Computing Fourier expansions of Eisenstein series. 2.4. Congruence subgroups. 2.5. Fundamental domains. 2.6. Modular forms for congruence subgroups. 2.7. Eisenstein series for congruence subgroups. 2.8. Derivatives of modular forms. 2.9. Exercises -- 3. Results on finite-dimensionality. 3.1. Spaces of modular forms are finite-dimensional. 3.2. Explicit formulae for the dimensions of spaces of modular forms. 3.3. The Sturm bound. 3.4. Exercises -- 4. The arithmetic of modular forms. 4.1. Hecke operators. 4.2. Bases of eigenforms. 4.3. Oldforms and newforms. 4.4. Exercises -- 5. Applications of modular forms. 5.1. Modular functions. 5.2. [symbol]-products and [symbol]-quotients. 5.3. The arithmetric of the [symbol]-invariant. 5.4. Applications of the modular function [symbol]. 5.5. Identities of series and products. 5.6. The Ramanujan-Petersson conjecture. 5.7. Elliptic curves and modular forms. 5.8. Theta functions and their applications. 5.9. CM modular forms. 5.10. Lacunary modular forms. 5.11. Exercises -- 6. Modular forms in characteristic [symbol]. 6.1. Classical treatment. 6.2. Galois representations attached to mod [symbol] modular forms. 6.3. Katz modular forms. 6.4. The Sturm bound in characteristic [symbol]. 6.5. Computations with mod [symbol] modular forms. 6.6. Exercises -- 7. Computing with modular forms. 7.1. Historical introduction to computations in number theory. 7.2. MAGMA. 7.3. SAGE. 7.4. PARI and other systems. 7.5. Discussion of computation. 7.6. Exercises. Forms, Modular Data processing. Algebraic spaces Data processing. Formes modulaires Informatique. Espaces algébriques Informatique. MATHEMATICS Number Theory. bisacsh has work: Modular forms (Text) https://id.oclc.org/worldcat/entity/E39PCGpywfD8Rxj7F3TRPqkPXq https://id.oclc.org/worldcat/ontology/hasWork Print version: Kilford, L.J.P. (Lloyd James Peter). Modular forms. London ; Hackensack, NJ : Imperial College Press, ©2008 1848162138 (DLC) 2008301117 (OCoLC)234380364 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516755 Volltext |
spellingShingle | Kilford, L. J. P. (Lloyd James Peter) Modular forms : a classical and computational introduction / 1. Historical overview. 1.1. 18th century -- a prologue. 1.2. 19th century -- the classical period. 1.3. Early 20th century -- arithmetic applications. 1.4. Later 20th century -- the link to elliptic curves. 1.5. The 21st century -- the Langlands program -- 2. Introduction to modular forms. 2.1. Modular forms for [symbol]. 2.2. Eisenstein series for the full modular group. 2.3. Computing Fourier expansions of Eisenstein series. 2.4. Congruence subgroups. 2.5. Fundamental domains. 2.6. Modular forms for congruence subgroups. 2.7. Eisenstein series for congruence subgroups. 2.8. Derivatives of modular forms. 2.9. Exercises -- 3. Results on finite-dimensionality. 3.1. Spaces of modular forms are finite-dimensional. 3.2. Explicit formulae for the dimensions of spaces of modular forms. 3.3. The Sturm bound. 3.4. Exercises -- 4. The arithmetic of modular forms. 4.1. Hecke operators. 4.2. Bases of eigenforms. 4.3. Oldforms and newforms. 4.4. Exercises -- 5. Applications of modular forms. 5.1. Modular functions. 5.2. [symbol]-products and [symbol]-quotients. 5.3. The arithmetric of the [symbol]-invariant. 5.4. Applications of the modular function [symbol]. 5.5. Identities of series and products. 5.6. The Ramanujan-Petersson conjecture. 5.7. Elliptic curves and modular forms. 5.8. Theta functions and their applications. 5.9. CM modular forms. 5.10. Lacunary modular forms. 5.11. Exercises -- 6. Modular forms in characteristic [symbol]. 6.1. Classical treatment. 6.2. Galois representations attached to mod [symbol] modular forms. 6.3. Katz modular forms. 6.4. The Sturm bound in characteristic [symbol]. 6.5. Computations with mod [symbol] modular forms. 6.6. Exercises -- 7. Computing with modular forms. 7.1. Historical introduction to computations in number theory. 7.2. MAGMA. 7.3. SAGE. 7.4. PARI and other systems. 7.5. Discussion of computation. 7.6. Exercises. Forms, Modular Data processing. Algebraic spaces Data processing. Formes modulaires Informatique. Espaces algébriques Informatique. MATHEMATICS Number Theory. bisacsh |
title | Modular forms : a classical and computational introduction / |
title_auth | Modular forms : a classical and computational introduction / |
title_exact_search | Modular forms : a classical and computational introduction / |
title_full | Modular forms : a classical and computational introduction / L.J.P. Kilford. |
title_fullStr | Modular forms : a classical and computational introduction / L.J.P. Kilford. |
title_full_unstemmed | Modular forms : a classical and computational introduction / L.J.P. Kilford. |
title_short | Modular forms : |
title_sort | modular forms a classical and computational introduction |
title_sub | a classical and computational introduction / |
topic | Forms, Modular Data processing. Algebraic spaces Data processing. Formes modulaires Informatique. Espaces algébriques Informatique. MATHEMATICS Number Theory. bisacsh |
topic_facet | Forms, Modular Data processing. Algebraic spaces Data processing. Formes modulaires Informatique. Espaces algébriques Informatique. MATHEMATICS Number Theory. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=516755 |
work_keys_str_mv | AT kilfordljp modularformsaclassicalandcomputationalintroduction |