Asymptotic Time Decay in Quantum Physics.:
Time decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time". This monog...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore :
World Scientific,
2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Time decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time". This monograph is devoted to a clear and precise, yet pedagogical account of the associated concepts and methods. |
Beschreibung: | 1 online resource (362 pages) |
Bibliographie: | Includes bibliographical references (pages 331-34) and index. |
ISBN: | 9789814383813 9814383813 9789814434560 9814434566 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn826853973 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n|---||||| | ||
008 | 130124s2012 si ob 001 0 eng d | ||
040 | |a MHW |b eng |e pn |c MHW |d EBLCP |d OCLCQ |d MEAUC |d DEBSZ |d OCLCQ |d CDX |d HKP |d N$T |d YDXCP |d STF |d IDEBK |d E7B |d CUS |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d MERUC |d OCLCQ |d ZCU |d NJR |d OCLCQ |d VTS |d ICG |d OCLCQ |d DKC |d OCLCQ |d OL$ |d OCLCQ |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLKB | ||
019 | |a 821767053 |a 822655793 |a 1264756120 |a 1431911461 | ||
020 | |a 9789814383813 | ||
020 | |a 9814383813 | ||
020 | |z 9814383805 | ||
020 | |z 9789814383806 | ||
020 | |z 9781283900027 | ||
020 | |z 1283900025 | ||
020 | |a 9789814434560 | ||
020 | |a 9814434566 | ||
035 | |a (OCoLC)826853973 |z (OCoLC)821767053 |z (OCoLC)822655793 |z (OCoLC)1264756120 |z (OCoLC)1431911461 | ||
037 | |a 421252 |b MIL | ||
050 | 4 | |a QC793.3 .S9 | |
072 | 7 | |a SCI |x 051000 |2 bisacsh | |
082 | 7 | |a 539 |a 539.7 | |
049 | |a MAIN | ||
100 | 1 | |a Marchetti, Domingos H. U. | |
245 | 1 | 0 | |a Asymptotic Time Decay in Quantum Physics. |
260 | |a Singapore : |b World Scientific, |c 2012. | ||
300 | |a 1 online resource (362 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | |a Time decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time". This monograph is devoted to a clear and precise, yet pedagogical account of the associated concepts and methods. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Preface: A Description of Contents; Acknowledgments; Contents; 1. Introduction: A Summary of Mathematical and Physical Background for One-Particle Quantum Mechanics; 2. Spreading and Asymptotic Decay of Free Wave Packets: The Method of Stationary Phase and van der Corput's Approach; 3. The Relation Between Time-Like Decay and Spectral Properties; 3.1 Decay on the Average Sense; 3.1.1 Preliminaries: Wiener's, RAGE and Weyl theorems; 3.1.2 Models of exotic spectra, quantum KAM theorems and Howland's theorem. | |
505 | 8 | |a 4.3.3 Proof of Theorem4.75. Resonances and Quasi-exponential Decay; 5.1 Introduction; 5.2 The Model System; 5.3 Generalities on Laplace-Borel Transform and Asymptotic Expansions; 5.4 Decay for a Class of Model Systems After Costin and Huang: Gamow Vectors and Dispersive Part; 5.5 The Role of Gamow Vectors; 5.6 A First Example of Quantum Instability: Ionization; 5.7 Ionization: Study of a Simple Model; 5.8 A Second Example of Multiphoton Ionization: The Work of M. Huang; 5.9 The Reason for Enhanced Stability at Resonances: Connection with the Fermi Golden Rule. | |
505 | 8 | |a 6. Aspects of the Connection Between Quantum Mechanics and Classical Mechanics: Quantum Systems with Infinite Number of Degrees of Freedom6.1 Introduction; 6.2 Exponential Decay and Quantum Anosov Systems; 6.2.1 Generalities: Exponential decay in quantum and classical systems; 6.2.2 QuantumAnosov systems; 6.2.3 Examples of quantum Anosov systems and Weigert's configurational quantum cat map; 6.3 Approach to Equilibrium; 6.3.1 A brief introductory motivation; 6.3.2 Approach to equilibrium in classical (statistical) mechanics 1: Ergodicity, mixing and the Anosov property. The Gibbs entropy. | |
504 | |a Includes bibliographical references (pages 331-34) and index. | ||
650 | 0 | |a Asymptotic symmetry (Physics) |0 http://id.loc.gov/authorities/subjects/sh91004839 | |
650 | 0 | |a Symmetry (Physics) |0 http://id.loc.gov/authorities/subjects/sh85131443 | |
650 | 0 | |a Quantum field theory. |0 http://id.loc.gov/authorities/subjects/sh85109461 | |
650 | 6 | |a Symétrie asymptotique (Physique) | |
650 | 6 | |a Symétrie (Physique) | |
650 | 6 | |a Théorie quantique des champs. | |
650 | 7 | |a SCIENCE |x Physics |x Nuclear. |2 bisacsh | |
650 | 7 | |a Asymptotic symmetry (Physics) |2 fast | |
650 | 7 | |a Quantum field theory |2 fast | |
650 | 7 | |a Symmetry (Physics) |2 fast | |
700 | 1 | |a Wreszinski, Walter F. | |
758 | |i has work: |a Asymptotic time decay in quantum physics (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFF9PRGcPtX99r8TFrYKFq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9789814383806 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=517000 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 24464885 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1109705 | ||
938 | |a ebrary |b EBRY |n ebr10640599 | ||
938 | |a EBSCOhost |b EBSC |n 517000 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis24464885 | ||
938 | |a YBP Library Services |b YANK |n 9961402 | ||
938 | |b OCKB |z perlego.catalogue,034fd322-4876-4251-bda6-c089782e5711-emi | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn826853973 |
---|---|
_version_ | 1816882221242384385 |
adam_text | |
any_adam_object | |
author | Marchetti, Domingos H. U. |
author2 | Wreszinski, Walter F. |
author2_role | |
author2_variant | w f w wf wfw |
author_facet | Marchetti, Domingos H. U. Wreszinski, Walter F. |
author_role | |
author_sort | Marchetti, Domingos H. U. |
author_variant | d h u m dhu dhum |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793.3 .S9 |
callnumber-search | QC793.3 .S9 |
callnumber-sort | QC 3793.3 S9 |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface: A Description of Contents; Acknowledgments; Contents; 1. Introduction: A Summary of Mathematical and Physical Background for One-Particle Quantum Mechanics; 2. Spreading and Asymptotic Decay of Free Wave Packets: The Method of Stationary Phase and van der Corput's Approach; 3. The Relation Between Time-Like Decay and Spectral Properties; 3.1 Decay on the Average Sense; 3.1.1 Preliminaries: Wiener's, RAGE and Weyl theorems; 3.1.2 Models of exotic spectra, quantum KAM theorems and Howland's theorem. 4.3.3 Proof of Theorem4.75. Resonances and Quasi-exponential Decay; 5.1 Introduction; 5.2 The Model System; 5.3 Generalities on Laplace-Borel Transform and Asymptotic Expansions; 5.4 Decay for a Class of Model Systems After Costin and Huang: Gamow Vectors and Dispersive Part; 5.5 The Role of Gamow Vectors; 5.6 A First Example of Quantum Instability: Ionization; 5.7 Ionization: Study of a Simple Model; 5.8 A Second Example of Multiphoton Ionization: The Work of M. Huang; 5.9 The Reason for Enhanced Stability at Resonances: Connection with the Fermi Golden Rule. 6. Aspects of the Connection Between Quantum Mechanics and Classical Mechanics: Quantum Systems with Infinite Number of Degrees of Freedom6.1 Introduction; 6.2 Exponential Decay and Quantum Anosov Systems; 6.2.1 Generalities: Exponential decay in quantum and classical systems; 6.2.2 QuantumAnosov systems; 6.2.3 Examples of quantum Anosov systems and Weigert's configurational quantum cat map; 6.3 Approach to Equilibrium; 6.3.1 A brief introductory motivation; 6.3.2 Approach to equilibrium in classical (statistical) mechanics 1: Ergodicity, mixing and the Anosov property. The Gibbs entropy. |
ctrlnum | (OCoLC)826853973 |
dewey-full | 539 539.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539 539.7 |
dewey-search | 539 539.7 |
dewey-sort | 3539 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04972cam a2200709Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn826853973</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|---|||||</controlfield><controlfield tag="008">130124s2012 si ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MHW</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MEAUC</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">HKP</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">STF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLKB</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">821767053</subfield><subfield code="a">822655793</subfield><subfield code="a">1264756120</subfield><subfield code="a">1431911461</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383813</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814383813</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814383805</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814383806</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781283900027</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1283900025</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814434560</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814434566</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)826853973</subfield><subfield code="z">(OCoLC)821767053</subfield><subfield code="z">(OCoLC)822655793</subfield><subfield code="z">(OCoLC)1264756120</subfield><subfield code="z">(OCoLC)1431911461</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">421252</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC793.3 .S9</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">051000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">539</subfield><subfield code="a">539.7</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marchetti, Domingos H. U.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Time Decay in Quantum Physics.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (362 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Time decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time". This monograph is devoted to a clear and precise, yet pedagogical account of the associated concepts and methods.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface: A Description of Contents; Acknowledgments; Contents; 1. Introduction: A Summary of Mathematical and Physical Background for One-Particle Quantum Mechanics; 2. Spreading and Asymptotic Decay of Free Wave Packets: The Method of Stationary Phase and van der Corput's Approach; 3. The Relation Between Time-Like Decay and Spectral Properties; 3.1 Decay on the Average Sense; 3.1.1 Preliminaries: Wiener's, RAGE and Weyl theorems; 3.1.2 Models of exotic spectra, quantum KAM theorems and Howland's theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.3 Proof of Theorem4.75. Resonances and Quasi-exponential Decay; 5.1 Introduction; 5.2 The Model System; 5.3 Generalities on Laplace-Borel Transform and Asymptotic Expansions; 5.4 Decay for a Class of Model Systems After Costin and Huang: Gamow Vectors and Dispersive Part; 5.5 The Role of Gamow Vectors; 5.6 A First Example of Quantum Instability: Ionization; 5.7 Ionization: Study of a Simple Model; 5.8 A Second Example of Multiphoton Ionization: The Work of M. Huang; 5.9 The Reason for Enhanced Stability at Resonances: Connection with the Fermi Golden Rule.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Aspects of the Connection Between Quantum Mechanics and Classical Mechanics: Quantum Systems with Infinite Number of Degrees of Freedom6.1 Introduction; 6.2 Exponential Decay and Quantum Anosov Systems; 6.2.1 Generalities: Exponential decay in quantum and classical systems; 6.2.2 QuantumAnosov systems; 6.2.3 Examples of quantum Anosov systems and Weigert's configurational quantum cat map; 6.3 Approach to Equilibrium; 6.3.1 A brief introductory motivation; 6.3.2 Approach to equilibrium in classical (statistical) mechanics 1: Ergodicity, mixing and the Anosov property. The Gibbs entropy.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 331-34) and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Asymptotic symmetry (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91004839</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Symmetry (Physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85131443</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum field theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109461</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie asymptotique (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique des champs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Physics</subfield><subfield code="x">Nuclear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Asymptotic symmetry (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum field theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Symmetry (Physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wreszinski, Walter F.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Asymptotic time decay in quantum physics (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFF9PRGcPtX99r8TFrYKFq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9789814383806</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=517000</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">24464885</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1109705</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10640599</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">517000</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis24464885</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9961402</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="b">OCKB</subfield><subfield code="z">perlego.catalogue,034fd322-4876-4251-bda6-c089782e5711-emi</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn826853973 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:10Z |
institution | BVB |
isbn | 9789814383813 9814383813 9789814434560 9814434566 |
language | English |
oclc_num | 826853973 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (362 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific, |
record_format | marc |
spelling | Marchetti, Domingos H. U. Asymptotic Time Decay in Quantum Physics. Singapore : World Scientific, 2012. 1 online resource (362 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Time decays form the basis of a multitude of important and interesting phenomena in quantum physics that range from spectral properties, resonances, return and approach to equilibrium, to quantum mixing, dynamical stability properties and irreversibility and the "arrow of time". This monograph is devoted to a clear and precise, yet pedagogical account of the associated concepts and methods. Print version record. Preface: A Description of Contents; Acknowledgments; Contents; 1. Introduction: A Summary of Mathematical and Physical Background for One-Particle Quantum Mechanics; 2. Spreading and Asymptotic Decay of Free Wave Packets: The Method of Stationary Phase and van der Corput's Approach; 3. The Relation Between Time-Like Decay and Spectral Properties; 3.1 Decay on the Average Sense; 3.1.1 Preliminaries: Wiener's, RAGE and Weyl theorems; 3.1.2 Models of exotic spectra, quantum KAM theorems and Howland's theorem. 4.3.3 Proof of Theorem4.75. Resonances and Quasi-exponential Decay; 5.1 Introduction; 5.2 The Model System; 5.3 Generalities on Laplace-Borel Transform and Asymptotic Expansions; 5.4 Decay for a Class of Model Systems After Costin and Huang: Gamow Vectors and Dispersive Part; 5.5 The Role of Gamow Vectors; 5.6 A First Example of Quantum Instability: Ionization; 5.7 Ionization: Study of a Simple Model; 5.8 A Second Example of Multiphoton Ionization: The Work of M. Huang; 5.9 The Reason for Enhanced Stability at Resonances: Connection with the Fermi Golden Rule. 6. Aspects of the Connection Between Quantum Mechanics and Classical Mechanics: Quantum Systems with Infinite Number of Degrees of Freedom6.1 Introduction; 6.2 Exponential Decay and Quantum Anosov Systems; 6.2.1 Generalities: Exponential decay in quantum and classical systems; 6.2.2 QuantumAnosov systems; 6.2.3 Examples of quantum Anosov systems and Weigert's configurational quantum cat map; 6.3 Approach to Equilibrium; 6.3.1 A brief introductory motivation; 6.3.2 Approach to equilibrium in classical (statistical) mechanics 1: Ergodicity, mixing and the Anosov property. The Gibbs entropy. Includes bibliographical references (pages 331-34) and index. Asymptotic symmetry (Physics) http://id.loc.gov/authorities/subjects/sh91004839 Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Symétrie asymptotique (Physique) Symétrie (Physique) Théorie quantique des champs. SCIENCE Physics Nuclear. bisacsh Asymptotic symmetry (Physics) fast Quantum field theory fast Symmetry (Physics) fast Wreszinski, Walter F. has work: Asymptotic time decay in quantum physics (Text) https://id.oclc.org/worldcat/entity/E39PCFF9PRGcPtX99r8TFrYKFq https://id.oclc.org/worldcat/ontology/hasWork Print version: 9789814383806 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=517000 Volltext |
spellingShingle | Marchetti, Domingos H. U. Asymptotic Time Decay in Quantum Physics. Preface: A Description of Contents; Acknowledgments; Contents; 1. Introduction: A Summary of Mathematical and Physical Background for One-Particle Quantum Mechanics; 2. Spreading and Asymptotic Decay of Free Wave Packets: The Method of Stationary Phase and van der Corput's Approach; 3. The Relation Between Time-Like Decay and Spectral Properties; 3.1 Decay on the Average Sense; 3.1.1 Preliminaries: Wiener's, RAGE and Weyl theorems; 3.1.2 Models of exotic spectra, quantum KAM theorems and Howland's theorem. 4.3.3 Proof of Theorem4.75. Resonances and Quasi-exponential Decay; 5.1 Introduction; 5.2 The Model System; 5.3 Generalities on Laplace-Borel Transform and Asymptotic Expansions; 5.4 Decay for a Class of Model Systems After Costin and Huang: Gamow Vectors and Dispersive Part; 5.5 The Role of Gamow Vectors; 5.6 A First Example of Quantum Instability: Ionization; 5.7 Ionization: Study of a Simple Model; 5.8 A Second Example of Multiphoton Ionization: The Work of M. Huang; 5.9 The Reason for Enhanced Stability at Resonances: Connection with the Fermi Golden Rule. 6. Aspects of the Connection Between Quantum Mechanics and Classical Mechanics: Quantum Systems with Infinite Number of Degrees of Freedom6.1 Introduction; 6.2 Exponential Decay and Quantum Anosov Systems; 6.2.1 Generalities: Exponential decay in quantum and classical systems; 6.2.2 QuantumAnosov systems; 6.2.3 Examples of quantum Anosov systems and Weigert's configurational quantum cat map; 6.3 Approach to Equilibrium; 6.3.1 A brief introductory motivation; 6.3.2 Approach to equilibrium in classical (statistical) mechanics 1: Ergodicity, mixing and the Anosov property. The Gibbs entropy. Asymptotic symmetry (Physics) http://id.loc.gov/authorities/subjects/sh91004839 Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Symétrie asymptotique (Physique) Symétrie (Physique) Théorie quantique des champs. SCIENCE Physics Nuclear. bisacsh Asymptotic symmetry (Physics) fast Quantum field theory fast Symmetry (Physics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh91004839 http://id.loc.gov/authorities/subjects/sh85131443 http://id.loc.gov/authorities/subjects/sh85109461 |
title | Asymptotic Time Decay in Quantum Physics. |
title_auth | Asymptotic Time Decay in Quantum Physics. |
title_exact_search | Asymptotic Time Decay in Quantum Physics. |
title_full | Asymptotic Time Decay in Quantum Physics. |
title_fullStr | Asymptotic Time Decay in Quantum Physics. |
title_full_unstemmed | Asymptotic Time Decay in Quantum Physics. |
title_short | Asymptotic Time Decay in Quantum Physics. |
title_sort | asymptotic time decay in quantum physics |
topic | Asymptotic symmetry (Physics) http://id.loc.gov/authorities/subjects/sh91004839 Symmetry (Physics) http://id.loc.gov/authorities/subjects/sh85131443 Quantum field theory. http://id.loc.gov/authorities/subjects/sh85109461 Symétrie asymptotique (Physique) Symétrie (Physique) Théorie quantique des champs. SCIENCE Physics Nuclear. bisacsh Asymptotic symmetry (Physics) fast Quantum field theory fast Symmetry (Physics) fast |
topic_facet | Asymptotic symmetry (Physics) Symmetry (Physics) Quantum field theory. Symétrie asymptotique (Physique) Symétrie (Physique) Théorie quantique des champs. SCIENCE Physics Nuclear. Quantum field theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=517000 |
work_keys_str_mv | AT marchettidomingoshu asymptotictimedecayinquantumphysics AT wreszinskiwalterf asymptotictimedecayinquantumphysics |