Linear and semilinear partial differential equations :: an introduction /
This textbook provides a brief and lucid introduction to the theory of linear partial differential equations. It clearly explains the transition from classical to generalized solutions and the natural way in which Sobolev spaces appear as completions of spaces of continuously differentiable function...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston :
De Gruyter,
[2013]
|
Schriftenreihe: | De Gruyter textbook.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This textbook provides a brief and lucid introduction to the theory of linear partial differential equations. It clearly explains the transition from classical to generalized solutions and the natural way in which Sobolev spaces appear as completions of spaces of continuously differentiable functions. The solution operators associated to non-homogeneous equations are used to make transition to the theory of nonlinear PDEs. Organized on three parts, this material is suitable for three one-semester courses, a beginning one in the frame of classical analysis, a more advanced course in modern theo. |
Beschreibung: | 1 online resource (xiv, 280 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 3110269058 9783110269055 9781299719774 1299719775 |
Internformat
MARC
LEADER | 00000cam a2200000Mi 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn826685105 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 130203t20132013gw a ob 001 0 eng d | ||
040 | |a YDXCP |b eng |e pn |c YDXCP |d OCLCO |d N$T |d E7B |d N$T |d IDEBK |d OCLCF |d MHW |d EBLCP |d DEBSZ |d CDX |d OCLCQ |d UAB |d OCLCQ |d LOA |d AGLDB |d COCUF |d MOR |d PIFAG |d OCLCQ |d MERUC |d OCLCQ |d ZCU |d U3W |d STF |d WRM |d OCLCQ |d VTS |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d TKN |d OCLCQ |d DKC |d OCLCQ |d M8D |d UKAHL |d HS0 |d OCLCQ |d AJS |d UWK |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 828137762 |a 852688828 | ||
020 | |a 3110269058 |q (electronic bk.) | ||
020 | |a 9783110269055 |q (electronic bk.) | ||
020 | |a 9781299719774 |q (MyiLibrary) | ||
020 | |a 1299719775 |q (MyiLibrary) | ||
020 | |z 9783110269048 |q (softcover ; |q alk. paper) | ||
020 | |z 311026904X |q (softcover ; |q alk. paper) | ||
035 | |a (OCoLC)826685105 |z (OCoLC)828137762 |z (OCoLC)852688828 | ||
037 | |a 503228 |b MIL | ||
050 | 4 | |a QA377 |b .P725 2013 | |
072 | 7 | |a QA |2 lcco | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
072 | 7 | |a MAT |2 eflch | |
082 | 7 | |a 515/.353 |2 23 | |
084 | |a SK 500 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Precup, Radu. | |
245 | 1 | 0 | |a Linear and semilinear partial differential equations : |b an introduction / |c Radu Precup. |
260 | |a Berlin ; |a Boston : |b De Gruyter, |c [2013] | ||
300 | |a 1 online resource (xiv, 280 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter textbook | |
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This textbook provides a brief and lucid introduction to the theory of linear partial differential equations. It clearly explains the transition from classical to generalized solutions and the natural way in which Sobolev spaces appear as completions of spaces of continuously differentiable functions. The solution operators associated to non-homogeneous equations are used to make transition to the theory of nonlinear PDEs. Organized on three parts, this material is suitable for three one-semester courses, a beginning one in the frame of classical analysis, a more advanced course in modern theo. | ||
505 | 0 | |a Preface; Notation; I Classical Theory; 1 Preliminaries; 1.1 Basic Differential Operators; 1.2 Linear and Quasilinear Partial Differential Equations; 1.3 Solutions of Some Particular Equations; 1.4 Boundary Value Problems; 1.4.1 Boundary Value Problems for Poisson's Equation; 1.4.2 Boundary Value Problems for the Heat Equation; 1.4.3 Boundary Value Problems for the Wave Equation; 2 Partial Differential Equations and Mathematical Modeling; 2.1 Conservation Laws: Continuity Equations; 2.2 Reaction-Diffusion Systems; 2.3 The One-Dimensional Wave Equation | |
505 | 8 | |a 2.4 Other Equations in Mathematical Physics3 Elliptic Boundary Value Problems; 3.1 Green's Formulas; 3.2 The Fundamental Solution of Laplace's Equation; 3.3 Mean Value Theorems for Harmonic Functions; 3.4 The Maximum Principle; 3.5 Uniqueness and Continuous Dependence on Data for the Dirichlet Problem; 3.6 Green's Function of the Dirichlet Problem; 3.7 Poisson's Formula; 3.8 Dirichlet's Principle; 3.9 The Generalized Solution of the Dirichlet Problem; 3.10 Abstract Fourier Series; 3.11 The Eigenvalues and Eigenfunctions of the Dirichlet Problem | |
505 | 8 | |a 3.12 The Case of Elliptic Equations in Divergence Form3.13 The Generalized Solution of the Neumann Problem; 3.14 Complements; 3.14.1 Harnack's Inequality; 3.14.2 Hopf's Maximum Principle; 3.14.3 The Newtonian Potential; 3.14.4 Perron's Method; 3.14.5 Layer Potentials; 3.14.6 Fredholm's Method of Integral Equations; 3.15 Problems; 4 Mixed Problems for Evolution Equations; 4.1 The Maximum Principle for the Heat Equation; 4.2 Vector-Valued Functions; 4.3 The Cauchy-Dirichlet Problem for the Heat Equation; 4.4 The Cauchy-Dirichlet Problem for the Wave Equation; 4.5 Problems | |
505 | 8 | |a 5 The Cauchy Problem for Evolution Equations5.1 The Fourier Transform; 5.1.1 The Fourier Transform on L1 (Rn); 5.1.2 Fourier Transform and Convolution; 5.1.3 The Fourier Transform on the Schwartz Space S (R"); 5.2 The Cauchy Problem for the Heat Equation; 5.3 The Cauchy Problem for the Wave Equation; 5.4 Nonhomogeneous Equations: Duhamel's Principle; 5.5 Problems; II Modern Theory; 6 Distributions; 6.1 The Fundamental Spaces of the Theory of Distributions; 6.2 Distributions: Examples; Operations with Distributions; 6.2.1 Regular Distributions; 6.2.2 The Dirac Distribution | |
650 | 0 | |a Differential equations, Linear |v Textbooks. | |
650 | 0 | |a Differential equations, Partial |v Textbooks. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Differential equations, Linear |2 fast | |
650 | 7 | |a Differential equations, Partial |2 fast | |
655 | 7 | |a Textbooks |2 fast | |
758 | |i has work: |a Linear and semilinear partial differential equations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGcPKpvhXx9dXxgXvxCFw3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9783110269048 |z 311026904X |w (DLC) 2012035431 |
830 | 0 | |a De Gruyter textbook. | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=530552 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=530552 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH25311779 | ||
938 | |a Coutts Information Services |b COUT |n 25806403 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL955848 | ||
938 | |a ebrary |b EBRY |n ebr10649221 | ||
938 | |a EBSCOhost |b EBSC |n 530552 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25806403 | ||
938 | |a YBP Library Services |b YANK |n 7624825 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn826685105 |
---|---|
_version_ | 1813903599241003009 |
adam_text | |
any_adam_object | |
author | Precup, Radu |
author_facet | Precup, Radu |
author_role | |
author_sort | Precup, Radu |
author_variant | r p rp |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA377 |
callnumber-raw | QA377 .P725 2013 |
callnumber-search | QA377 .P725 2013 |
callnumber-sort | QA 3377 P725 42013 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 500 |
collection | ZDB-4-EBA |
contents | Preface; Notation; I Classical Theory; 1 Preliminaries; 1.1 Basic Differential Operators; 1.2 Linear and Quasilinear Partial Differential Equations; 1.3 Solutions of Some Particular Equations; 1.4 Boundary Value Problems; 1.4.1 Boundary Value Problems for Poisson's Equation; 1.4.2 Boundary Value Problems for the Heat Equation; 1.4.3 Boundary Value Problems for the Wave Equation; 2 Partial Differential Equations and Mathematical Modeling; 2.1 Conservation Laws: Continuity Equations; 2.2 Reaction-Diffusion Systems; 2.3 The One-Dimensional Wave Equation 2.4 Other Equations in Mathematical Physics3 Elliptic Boundary Value Problems; 3.1 Green's Formulas; 3.2 The Fundamental Solution of Laplace's Equation; 3.3 Mean Value Theorems for Harmonic Functions; 3.4 The Maximum Principle; 3.5 Uniqueness and Continuous Dependence on Data for the Dirichlet Problem; 3.6 Green's Function of the Dirichlet Problem; 3.7 Poisson's Formula; 3.8 Dirichlet's Principle; 3.9 The Generalized Solution of the Dirichlet Problem; 3.10 Abstract Fourier Series; 3.11 The Eigenvalues and Eigenfunctions of the Dirichlet Problem 3.12 The Case of Elliptic Equations in Divergence Form3.13 The Generalized Solution of the Neumann Problem; 3.14 Complements; 3.14.1 Harnack's Inequality; 3.14.2 Hopf's Maximum Principle; 3.14.3 The Newtonian Potential; 3.14.4 Perron's Method; 3.14.5 Layer Potentials; 3.14.6 Fredholm's Method of Integral Equations; 3.15 Problems; 4 Mixed Problems for Evolution Equations; 4.1 The Maximum Principle for the Heat Equation; 4.2 Vector-Valued Functions; 4.3 The Cauchy-Dirichlet Problem for the Heat Equation; 4.4 The Cauchy-Dirichlet Problem for the Wave Equation; 4.5 Problems 5 The Cauchy Problem for Evolution Equations5.1 The Fourier Transform; 5.1.1 The Fourier Transform on L1 (Rn); 5.1.2 Fourier Transform and Convolution; 5.1.3 The Fourier Transform on the Schwartz Space S (R"); 5.2 The Cauchy Problem for the Heat Equation; 5.3 The Cauchy Problem for the Wave Equation; 5.4 Nonhomogeneous Equations: Duhamel's Principle; 5.5 Problems; II Modern Theory; 6 Distributions; 6.1 The Fundamental Spaces of the Theory of Distributions; 6.2 Distributions: Examples; Operations with Distributions; 6.2.1 Regular Distributions; 6.2.2 The Dirac Distribution |
ctrlnum | (OCoLC)826685105 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05772cam a2200697Mi 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn826685105</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">130203t20132013gw a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">YDXCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">YDXCP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">MHW</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">UWK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">828137762</subfield><subfield code="a">852688828</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110269058</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110269055</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299719774</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299719775</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110269048</subfield><subfield code="q">(softcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">311026904X</subfield><subfield code="q">(softcover ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)826685105</subfield><subfield code="z">(OCoLC)828137762</subfield><subfield code="z">(OCoLC)852688828</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">503228</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA377</subfield><subfield code="b">.P725 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">QA</subfield><subfield code="2">lcco</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">eflch</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 500</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Precup, Radu.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear and semilinear partial differential equations :</subfield><subfield code="b">an introduction /</subfield><subfield code="c">Radu Precup.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 280 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter textbook</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook provides a brief and lucid introduction to the theory of linear partial differential equations. It clearly explains the transition from classical to generalized solutions and the natural way in which Sobolev spaces appear as completions of spaces of continuously differentiable functions. The solution operators associated to non-homogeneous equations are used to make transition to the theory of nonlinear PDEs. Organized on three parts, this material is suitable for three one-semester courses, a beginning one in the frame of classical analysis, a more advanced course in modern theo.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface; Notation; I Classical Theory; 1 Preliminaries; 1.1 Basic Differential Operators; 1.2 Linear and Quasilinear Partial Differential Equations; 1.3 Solutions of Some Particular Equations; 1.4 Boundary Value Problems; 1.4.1 Boundary Value Problems for Poisson's Equation; 1.4.2 Boundary Value Problems for the Heat Equation; 1.4.3 Boundary Value Problems for the Wave Equation; 2 Partial Differential Equations and Mathematical Modeling; 2.1 Conservation Laws: Continuity Equations; 2.2 Reaction-Diffusion Systems; 2.3 The One-Dimensional Wave Equation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 Other Equations in Mathematical Physics3 Elliptic Boundary Value Problems; 3.1 Green's Formulas; 3.2 The Fundamental Solution of Laplace's Equation; 3.3 Mean Value Theorems for Harmonic Functions; 3.4 The Maximum Principle; 3.5 Uniqueness and Continuous Dependence on Data for the Dirichlet Problem; 3.6 Green's Function of the Dirichlet Problem; 3.7 Poisson's Formula; 3.8 Dirichlet's Principle; 3.9 The Generalized Solution of the Dirichlet Problem; 3.10 Abstract Fourier Series; 3.11 The Eigenvalues and Eigenfunctions of the Dirichlet Problem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.12 The Case of Elliptic Equations in Divergence Form3.13 The Generalized Solution of the Neumann Problem; 3.14 Complements; 3.14.1 Harnack's Inequality; 3.14.2 Hopf's Maximum Principle; 3.14.3 The Newtonian Potential; 3.14.4 Perron's Method; 3.14.5 Layer Potentials; 3.14.6 Fredholm's Method of Integral Equations; 3.15 Problems; 4 Mixed Problems for Evolution Equations; 4.1 The Maximum Principle for the Heat Equation; 4.2 Vector-Valued Functions; 4.3 The Cauchy-Dirichlet Problem for the Heat Equation; 4.4 The Cauchy-Dirichlet Problem for the Wave Equation; 4.5 Problems</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 The Cauchy Problem for Evolution Equations5.1 The Fourier Transform; 5.1.1 The Fourier Transform on L1 (Rn); 5.1.2 Fourier Transform and Convolution; 5.1.3 The Fourier Transform on the Schwartz Space S (R"); 5.2 The Cauchy Problem for the Heat Equation; 5.3 The Cauchy Problem for the Wave Equation; 5.4 Nonhomogeneous Equations: Duhamel's Principle; 5.5 Problems; II Modern Theory; 6 Distributions; 6.1 The Fundamental Spaces of the Theory of Distributions; 6.2 Distributions: Examples; Operations with Distributions; 6.2.1 Regular Distributions; 6.2.2 The Dirac Distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Linear</subfield><subfield code="v">Textbooks.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Partial</subfield><subfield code="v">Textbooks.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Linear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Partial</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Textbooks</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Linear and semilinear partial differential equations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGcPKpvhXx9dXxgXvxCFw3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9783110269048</subfield><subfield code="z">311026904X</subfield><subfield code="w">(DLC) 2012035431</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter textbook.</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=530552</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=530552</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25311779</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">25806403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL955848</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10649221</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">530552</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25806403</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7624825</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
genre | Textbooks fast |
genre_facet | Textbooks |
id | ZDB-4-EBA-ocn826685105 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:21:14Z |
institution | BVB |
isbn | 3110269058 9783110269055 9781299719774 1299719775 |
language | English |
oclc_num | 826685105 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xiv, 280 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | De Gruyter, |
record_format | marc |
series | De Gruyter textbook. |
series2 | De Gruyter textbook |
spelling | Precup, Radu. Linear and semilinear partial differential equations : an introduction / Radu Precup. Berlin ; Boston : De Gruyter, [2013] 1 online resource (xiv, 280 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter textbook Includes bibliographical references and index. Print version record. This textbook provides a brief and lucid introduction to the theory of linear partial differential equations. It clearly explains the transition from classical to generalized solutions and the natural way in which Sobolev spaces appear as completions of spaces of continuously differentiable functions. The solution operators associated to non-homogeneous equations are used to make transition to the theory of nonlinear PDEs. Organized on three parts, this material is suitable for three one-semester courses, a beginning one in the frame of classical analysis, a more advanced course in modern theo. Preface; Notation; I Classical Theory; 1 Preliminaries; 1.1 Basic Differential Operators; 1.2 Linear and Quasilinear Partial Differential Equations; 1.3 Solutions of Some Particular Equations; 1.4 Boundary Value Problems; 1.4.1 Boundary Value Problems for Poisson's Equation; 1.4.2 Boundary Value Problems for the Heat Equation; 1.4.3 Boundary Value Problems for the Wave Equation; 2 Partial Differential Equations and Mathematical Modeling; 2.1 Conservation Laws: Continuity Equations; 2.2 Reaction-Diffusion Systems; 2.3 The One-Dimensional Wave Equation 2.4 Other Equations in Mathematical Physics3 Elliptic Boundary Value Problems; 3.1 Green's Formulas; 3.2 The Fundamental Solution of Laplace's Equation; 3.3 Mean Value Theorems for Harmonic Functions; 3.4 The Maximum Principle; 3.5 Uniqueness and Continuous Dependence on Data for the Dirichlet Problem; 3.6 Green's Function of the Dirichlet Problem; 3.7 Poisson's Formula; 3.8 Dirichlet's Principle; 3.9 The Generalized Solution of the Dirichlet Problem; 3.10 Abstract Fourier Series; 3.11 The Eigenvalues and Eigenfunctions of the Dirichlet Problem 3.12 The Case of Elliptic Equations in Divergence Form3.13 The Generalized Solution of the Neumann Problem; 3.14 Complements; 3.14.1 Harnack's Inequality; 3.14.2 Hopf's Maximum Principle; 3.14.3 The Newtonian Potential; 3.14.4 Perron's Method; 3.14.5 Layer Potentials; 3.14.6 Fredholm's Method of Integral Equations; 3.15 Problems; 4 Mixed Problems for Evolution Equations; 4.1 The Maximum Principle for the Heat Equation; 4.2 Vector-Valued Functions; 4.3 The Cauchy-Dirichlet Problem for the Heat Equation; 4.4 The Cauchy-Dirichlet Problem for the Wave Equation; 4.5 Problems 5 The Cauchy Problem for Evolution Equations5.1 The Fourier Transform; 5.1.1 The Fourier Transform on L1 (Rn); 5.1.2 Fourier Transform and Convolution; 5.1.3 The Fourier Transform on the Schwartz Space S (R"); 5.2 The Cauchy Problem for the Heat Equation; 5.3 The Cauchy Problem for the Wave Equation; 5.4 Nonhomogeneous Equations: Duhamel's Principle; 5.5 Problems; II Modern Theory; 6 Distributions; 6.1 The Fundamental Spaces of the Theory of Distributions; 6.2 Distributions: Examples; Operations with Distributions; 6.2.1 Regular Distributions; 6.2.2 The Dirac Distribution Differential equations, Linear Textbooks. Differential equations, Partial Textbooks. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Linear fast Differential equations, Partial fast Textbooks fast has work: Linear and semilinear partial differential equations (Text) https://id.oclc.org/worldcat/entity/E39PCGcPKpvhXx9dXxgXvxCFw3 https://id.oclc.org/worldcat/ontology/hasWork Print version: 9783110269048 311026904X (DLC) 2012035431 De Gruyter textbook. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=530552 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=530552 Volltext |
spellingShingle | Precup, Radu Linear and semilinear partial differential equations : an introduction / De Gruyter textbook. Preface; Notation; I Classical Theory; 1 Preliminaries; 1.1 Basic Differential Operators; 1.2 Linear and Quasilinear Partial Differential Equations; 1.3 Solutions of Some Particular Equations; 1.4 Boundary Value Problems; 1.4.1 Boundary Value Problems for Poisson's Equation; 1.4.2 Boundary Value Problems for the Heat Equation; 1.4.3 Boundary Value Problems for the Wave Equation; 2 Partial Differential Equations and Mathematical Modeling; 2.1 Conservation Laws: Continuity Equations; 2.2 Reaction-Diffusion Systems; 2.3 The One-Dimensional Wave Equation 2.4 Other Equations in Mathematical Physics3 Elliptic Boundary Value Problems; 3.1 Green's Formulas; 3.2 The Fundamental Solution of Laplace's Equation; 3.3 Mean Value Theorems for Harmonic Functions; 3.4 The Maximum Principle; 3.5 Uniqueness and Continuous Dependence on Data for the Dirichlet Problem; 3.6 Green's Function of the Dirichlet Problem; 3.7 Poisson's Formula; 3.8 Dirichlet's Principle; 3.9 The Generalized Solution of the Dirichlet Problem; 3.10 Abstract Fourier Series; 3.11 The Eigenvalues and Eigenfunctions of the Dirichlet Problem 3.12 The Case of Elliptic Equations in Divergence Form3.13 The Generalized Solution of the Neumann Problem; 3.14 Complements; 3.14.1 Harnack's Inequality; 3.14.2 Hopf's Maximum Principle; 3.14.3 The Newtonian Potential; 3.14.4 Perron's Method; 3.14.5 Layer Potentials; 3.14.6 Fredholm's Method of Integral Equations; 3.15 Problems; 4 Mixed Problems for Evolution Equations; 4.1 The Maximum Principle for the Heat Equation; 4.2 Vector-Valued Functions; 4.3 The Cauchy-Dirichlet Problem for the Heat Equation; 4.4 The Cauchy-Dirichlet Problem for the Wave Equation; 4.5 Problems 5 The Cauchy Problem for Evolution Equations5.1 The Fourier Transform; 5.1.1 The Fourier Transform on L1 (Rn); 5.1.2 Fourier Transform and Convolution; 5.1.3 The Fourier Transform on the Schwartz Space S (R"); 5.2 The Cauchy Problem for the Heat Equation; 5.3 The Cauchy Problem for the Wave Equation; 5.4 Nonhomogeneous Equations: Duhamel's Principle; 5.5 Problems; II Modern Theory; 6 Distributions; 6.1 The Fundamental Spaces of the Theory of Distributions; 6.2 Distributions: Examples; Operations with Distributions; 6.2.1 Regular Distributions; 6.2.2 The Dirac Distribution Differential equations, Linear Textbooks. Differential equations, Partial Textbooks. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Linear fast Differential equations, Partial fast |
title | Linear and semilinear partial differential equations : an introduction / |
title_auth | Linear and semilinear partial differential equations : an introduction / |
title_exact_search | Linear and semilinear partial differential equations : an introduction / |
title_full | Linear and semilinear partial differential equations : an introduction / Radu Precup. |
title_fullStr | Linear and semilinear partial differential equations : an introduction / Radu Precup. |
title_full_unstemmed | Linear and semilinear partial differential equations : an introduction / Radu Precup. |
title_short | Linear and semilinear partial differential equations : |
title_sort | linear and semilinear partial differential equations an introduction |
title_sub | an introduction / |
topic | Differential equations, Linear Textbooks. Differential equations, Partial Textbooks. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Linear fast Differential equations, Partial fast |
topic_facet | Differential equations, Linear Textbooks. Differential equations, Partial Textbooks. MATHEMATICS Differential Equations Partial. Differential equations, Linear Differential equations, Partial Textbooks |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=530552 |
work_keys_str_mv | AT precupradu linearandsemilinearpartialdifferentialequationsanintroduction |