Variational methods for strongly indefinite problems /:
"This unique book focuses on critical point theory for strongly indefinite functionals aiming to deal with nonlinear variational problems arising from physics, mechanics, economics, etc. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipsch...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2007.
|
Schriftenreihe: | Interdisciplinary mathematical sciences ;
v. 7. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This unique book focuses on critical point theory for strongly indefinite functionals aiming to deal with nonlinear variational problems arising from physics, mechanics, economics, etc. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, it presents for the first time a deformation theory in locally convex topological vector spaces (LCTVS). The book then offers satisfying variational settings for homoclinic type solutions to Hamiltonian systems, Schrodinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems."--Jacket |
Beschreibung: | 1 online resource (viii, 168 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 161-166) and index. |
ISBN: | 9789812709639 9812709630 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn826660609 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130204s2007 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCE |d IDEBK |d E7B |d DEBSZ |d YDXCP |d MHW |d OCLCQ |d OCLCF |d OCLCQ |d MERUC |d OCLCQ |d ZCU |d U3W |d VTS |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d JBG |d STF |d OCLCQ |d LEAUB |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 654337127 |a 666957459 |a 851264218 |a 1055407533 |a 1066447146 |a 1081240564 |a 1228565223 | ||
020 | |a 9789812709639 |q (electronic bk.) | ||
020 | |a 9812709630 |q (electronic bk.) | ||
020 | |z 9789812709622 | ||
020 | |z 9812709622 | ||
035 | |a (OCoLC)826660609 |z (OCoLC)654337127 |z (OCoLC)666957459 |z (OCoLC)851264218 |z (OCoLC)1055407533 |z (OCoLC)1066447146 |z (OCoLC)1081240564 |z (OCoLC)1228565223 | ||
050 | 4 | |a QA315 |b .D56 2007eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.64 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Ding, Yanheng. | |
245 | 1 | 0 | |a Variational methods for strongly indefinite problems / |c Yanheng Ding. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2007. | ||
300 | |a 1 online resource (viii, 168 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Interdisciplinary mathematical sciences ; |v v. 7 | |
504 | |a Includes bibliographical references (pages 161-166) and index. | ||
505 | 0 | |a Lipschitz partitions of unity -- Deformations on locally convex topological vector spaces -- Critical point theorems -- Homoclinics in Hamiltonian systems -- Standing waves of nonlinear Schrödinger equations -- Solutions of nonlinear Dirac equations -- Solutions of a system of diffusion equations. | |
520 | 1 | |a "This unique book focuses on critical point theory for strongly indefinite functionals aiming to deal with nonlinear variational problems arising from physics, mechanics, economics, etc. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, it presents for the first time a deformation theory in locally convex topological vector spaces (LCTVS). The book then offers satisfying variational settings for homoclinic type solutions to Hamiltonian systems, Schrodinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems."--Jacket | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Calculus of variations. |0 http://id.loc.gov/authorities/subjects/sh85018809 | |
650 | 0 | |a Diophantine equations. |0 http://id.loc.gov/authorities/subjects/sh92001030 | |
650 | 6 | |a Calcul des variations. | |
650 | 6 | |a Équations diophantiennes. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Calculus of variations |2 fast | |
650 | 7 | |a Diophantine equations |2 fast | |
758 | |i has work: |a Variational methods for strongly indefinite problems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGRRGFb9ctppmmDDrcJ6mm |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ding, Yanheng. |t Variational methods for strongly indefinite problems. |d Singapore ; Hackensack, NJ : World Scientific, ©2007 |z 9789812709622 |w (DLC) 2008295002 |w (OCoLC)166390736 |
830 | 0 | |a Interdisciplinary mathematical sciences ; |v v. 7. |0 http://id.loc.gov/authorities/names/n2004018211 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518646 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24684211 | ||
938 | |a ebrary |b EBRY |n ebr10699059 | ||
938 | |a EBSCOhost |b EBSC |n 518646 | ||
938 | |a YBP Library Services |b YANK |n 9975931 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn826660609 |
---|---|
_version_ | 1816882221074612224 |
adam_text | |
any_adam_object | |
author | Ding, Yanheng |
author_facet | Ding, Yanheng |
author_role | |
author_sort | Ding, Yanheng |
author_variant | y d yd |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA315 |
callnumber-raw | QA315 .D56 2007eb |
callnumber-search | QA315 .D56 2007eb |
callnumber-sort | QA 3315 D56 42007EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Lipschitz partitions of unity -- Deformations on locally convex topological vector spaces -- Critical point theorems -- Homoclinics in Hamiltonian systems -- Standing waves of nonlinear Schrödinger equations -- Solutions of nonlinear Dirac equations -- Solutions of a system of diffusion equations. |
ctrlnum | (OCoLC)826660609 |
dewey-full | 515/.64 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.64 |
dewey-search | 515/.64 |
dewey-sort | 3515 264 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03995cam a2200589 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn826660609</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130204s2007 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCE</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">U3W</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">JBG</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">654337127</subfield><subfield code="a">666957459</subfield><subfield code="a">851264218</subfield><subfield code="a">1055407533</subfield><subfield code="a">1066447146</subfield><subfield code="a">1081240564</subfield><subfield code="a">1228565223</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812709639</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812709630</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812709622</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812709622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)826660609</subfield><subfield code="z">(OCoLC)654337127</subfield><subfield code="z">(OCoLC)666957459</subfield><subfield code="z">(OCoLC)851264218</subfield><subfield code="z">(OCoLC)1055407533</subfield><subfield code="z">(OCoLC)1066447146</subfield><subfield code="z">(OCoLC)1081240564</subfield><subfield code="z">(OCoLC)1228565223</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA315</subfield><subfield code="b">.D56 2007eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Yanheng.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variational methods for strongly indefinite problems /</subfield><subfield code="c">Yanheng Ding.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2007.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 168 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Interdisciplinary mathematical sciences ;</subfield><subfield code="v">v. 7</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 161-166) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Lipschitz partitions of unity -- Deformations on locally convex topological vector spaces -- Critical point theorems -- Homoclinics in Hamiltonian systems -- Standing waves of nonlinear Schrödinger equations -- Solutions of nonlinear Dirac equations -- Solutions of a system of diffusion equations.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"This unique book focuses on critical point theory for strongly indefinite functionals aiming to deal with nonlinear variational problems arising from physics, mechanics, economics, etc. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, it presents for the first time a deformation theory in locally convex topological vector spaces (LCTVS). The book then offers satisfying variational settings for homoclinic type solutions to Hamiltonian systems, Schrodinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems."--Jacket</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus of variations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018809</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Diophantine equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92001030</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul des variations.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations diophantiennes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus of variations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diophantine equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Variational methods for strongly indefinite problems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGRRGFb9ctppmmDDrcJ6mm</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ding, Yanheng.</subfield><subfield code="t">Variational methods for strongly indefinite problems.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, ©2007</subfield><subfield code="z">9789812709622</subfield><subfield code="w">(DLC) 2008295002</subfield><subfield code="w">(OCoLC)166390736</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Interdisciplinary mathematical sciences ;</subfield><subfield code="v">v. 7.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2004018211</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518646</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684211</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10699059</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">518646</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9975931</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn826660609 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:10Z |
institution | BVB |
isbn | 9789812709639 9812709630 |
language | English |
oclc_num | 826660609 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 168 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | World Scientific, |
record_format | marc |
series | Interdisciplinary mathematical sciences ; |
series2 | Interdisciplinary mathematical sciences ; |
spelling | Ding, Yanheng. Variational methods for strongly indefinite problems / Yanheng Ding. Singapore ; Hackensack, NJ : World Scientific, ©2007. 1 online resource (viii, 168 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Interdisciplinary mathematical sciences ; v. 7 Includes bibliographical references (pages 161-166) and index. Lipschitz partitions of unity -- Deformations on locally convex topological vector spaces -- Critical point theorems -- Homoclinics in Hamiltonian systems -- Standing waves of nonlinear Schrödinger equations -- Solutions of nonlinear Dirac equations -- Solutions of a system of diffusion equations. "This unique book focuses on critical point theory for strongly indefinite functionals aiming to deal with nonlinear variational problems arising from physics, mechanics, economics, etc. With the original ingredients of Lipschitz partitions of unity of gage spaces (nonmetrizable spaces), Lipschitz normality, and sufficient conditions for the normality, as well as existence-uniqueness of flow of ODE on gage spaces, it presents for the first time a deformation theory in locally convex topological vector spaces (LCTVS). The book then offers satisfying variational settings for homoclinic type solutions to Hamiltonian systems, Schrodinger equations, Dirac equations and diffusion systems, and describes recent developments in studying these problems."--Jacket Print version record. Calculus of variations. http://id.loc.gov/authorities/subjects/sh85018809 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Calcul des variations. Équations diophantiennes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus of variations fast Diophantine equations fast has work: Variational methods for strongly indefinite problems (Text) https://id.oclc.org/worldcat/entity/E39PCGRRGFb9ctppmmDDrcJ6mm https://id.oclc.org/worldcat/ontology/hasWork Print version: Ding, Yanheng. Variational methods for strongly indefinite problems. Singapore ; Hackensack, NJ : World Scientific, ©2007 9789812709622 (DLC) 2008295002 (OCoLC)166390736 Interdisciplinary mathematical sciences ; v. 7. http://id.loc.gov/authorities/names/n2004018211 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518646 Volltext |
spellingShingle | Ding, Yanheng Variational methods for strongly indefinite problems / Interdisciplinary mathematical sciences ; Lipschitz partitions of unity -- Deformations on locally convex topological vector spaces -- Critical point theorems -- Homoclinics in Hamiltonian systems -- Standing waves of nonlinear Schrödinger equations -- Solutions of nonlinear Dirac equations -- Solutions of a system of diffusion equations. Calculus of variations. http://id.loc.gov/authorities/subjects/sh85018809 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Calcul des variations. Équations diophantiennes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus of variations fast Diophantine equations fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85018809 http://id.loc.gov/authorities/subjects/sh92001030 |
title | Variational methods for strongly indefinite problems / |
title_auth | Variational methods for strongly indefinite problems / |
title_exact_search | Variational methods for strongly indefinite problems / |
title_full | Variational methods for strongly indefinite problems / Yanheng Ding. |
title_fullStr | Variational methods for strongly indefinite problems / Yanheng Ding. |
title_full_unstemmed | Variational methods for strongly indefinite problems / Yanheng Ding. |
title_short | Variational methods for strongly indefinite problems / |
title_sort | variational methods for strongly indefinite problems |
topic | Calculus of variations. http://id.loc.gov/authorities/subjects/sh85018809 Diophantine equations. http://id.loc.gov/authorities/subjects/sh92001030 Calcul des variations. Équations diophantiennes. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus of variations fast Diophantine equations fast |
topic_facet | Calculus of variations. Diophantine equations. Calcul des variations. Équations diophantiennes. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Calculus of variations Diophantine equations |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=518646 |
work_keys_str_mv | AT dingyanheng variationalmethodsforstronglyindefiniteproblems |