Bayesian theory and applications /:
This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. |
Beschreibung: | 1 online resource (xi, 702 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9780191647000 0191647004 9780199695607 0199695601 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn826443506 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120912s2013 enka fob 000 0 eng d | ||
040 | |a CDX |b eng |e pn |c CDX |d OCLCO |d N$T |d IDEBK |d YDXCP |d E7B |d STF |d OKU |d CUS |d OCLCQ |d UPM |d OCLCF |d OCLCQ |d OCLCO |d COO |d EBLCP |d OCLCQ |d STBDS |d OCLCQ |d DEBBG |d BUF |d WYU |d YOU |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d SFB |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ |d COA | ||
019 | |a 922972076 |a 992884903 |a 1058937531 |a 1340069506 | ||
020 | |a 9780191647000 |q (electronic bk.) | ||
020 | |a 0191647004 |q (electronic bk.) | ||
020 | |a 9780199695607 | ||
020 | |a 0199695601 | ||
020 | |z 9781283950404 |q (MyiLibrary) | ||
020 | |z 1283950405 |q (MyiLibrary) | ||
024 | 8 | |a (WaSeSS)ssj0000913170 | |
035 | |a (OCoLC)826443506 |z (OCoLC)922972076 |z (OCoLC)992884903 |z (OCoLC)1058937531 |z (OCoLC)1340069506 | ||
050 | 4 | |a QA279.5 | |
072 | 7 | |a MAT |2 eflch | |
072 | 7 | |a MAT |x 029010 |2 bisacsh | |
082 | 7 | |a 519.5/42 |2 23 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Bayesian theory and applications / |c edited by Paul Damien, Petros Dellaportas, Nicholas G. Polson, & David A. Stephens. |
260 | |a Oxford : |b Oxford University Press, |c 2013. | ||
300 | |a 1 online resource (xi, 702 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
520 | 8 | |a This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. | |
588 | 0 | |a Print version record. | |
504 | |a Includes bibliographical references. | ||
505 | 0 | |a ""Cover""; ""Contents""; ""Contributors""; ""Introduction""; ""Part I: Exchangeability""; ""1 Observables and models: exchangeability and the inductive argument""; ""2 Exchangeability and its ramifications""; ""Part II: Hierarchical Models""; ""3 Hierarchical modelling""; ""4 Bayesian hierarchical kernel machines for nonlinear regression and classification""; ""5 Flexible Bayesian modelling for clustered categorical responses in developmental toxicology""; ""Part III: Markov Chain Monte Carlo""; ""6 Markov chain Monte Carlo methods""; ""7 Advances in Markov chain Monte Carlo"" | |
505 | 8 | |a ""Part IV: Dynamic Models""""8 Bayesian dynamic modelling""; ""9 Hierarchical modelling in time series: the factor analytic approach""; ""10 Dynamic and spatial modelling of block maxima extremes""; ""Part V: Sequential Monte Carlo""; ""11 Online Bayesian learning in dynamic models: an illustrative introduction to particle methods""; ""12 Semi-supervised classification of texts using particle learning for probabilistic automata""; ""Part VI: Nonparametrics""; ""13 Bayesian nonparametrics""; ""14 Geometric weight priors and their applications"" | |
505 | 8 | |a ""15 Revisiting Bayesian curve fitting using multivariate normal mixtures""""Part VII: Spline Models and Copulas""; ""16 Applications of Bayesian smoothing splines""; ""17 Bayesian approaches to copula modelling""; ""Part VIII: Model Elaboration and Prior Distributions""; ""18 Hypothesis testing and model uncertainty""; ""19 Proper and non-informative conjugate priors for exponential family models""; ""20 Bayesian model specification: heuristics and examples""; ""21 Case studies in Bayesian screening for time-varying model structure: the partition problem"" | |
505 | 8 | |a ""Part IX: Regressions and Model Averaging""""22 Bayesian regression structure discovery""; ""23 Gibbs sampling for ordinary, robust and logistic regression with Laplace priors""; ""24 Bayesian model averaging in the M-open framework""; ""Part X: Finance and Actuarial Science""; ""25 Asset allocation in finance: a Bayesian perspective""; ""26 Markov chain Monte Carlo methods in corporate finance""; ""27 Actuarial credibility theory and Bayesian statistics�the story of a special evolution""; ""Part XI: Medicine and Biostatistics""; ""28 Bayesian models in biostatistics and medicine"" | |
505 | 8 | |a ""29 Subgroup analysis""""30 Surviving fully Bayesian nonparametric regression models""; ""Part XII: Inverse Problems and Applications""; ""31 Inverse problems""; ""32 Approximate marginalization over modelling errors and uncertainties in inverse problems""; ""33 Bayesian reconstruction of particle beam phase space""; ""Adrian Smith�s research supervision (PhD)""; ""Adrian Smith�s publications""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Z"" | |
650 | 0 | |a Bayesian statistical decision theory. |0 http://id.loc.gov/authorities/subjects/sh85012506 | |
650 | 6 | |a Théorie de la décision bayésienne. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x Bayesian Analysis. |2 bisacsh | |
650 | 7 | |a Bayesian statistical decision theory |2 fast | |
700 | 1 | |a Damien, Paul, |d 1960- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJkxJ7KR4Dgk7m4MrCTyh3 |0 http://id.loc.gov/authorities/names/no2008086466 | |
700 | 1 | |a Dellaportas, Petros, |e editor. | |
700 | 1 | |a Polson, Nicholas G., |d 1963- |e editor. |1 https://id.oclc.org/worldcat/entity/E39PBJkp8J3pDxd8pcyxqGqqQq |0 http://id.loc.gov/authorities/names/n94101895 | |
700 | 1 | |a Stephens, David A., |e editor. | |
776 | 0 | 8 | |i Print version: |t Bayesian theory and applications. |b First edition. |d Oxford : Oxford University Press, 2013 |z 9780199695607 |w (OCoLC)836808590 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=522001 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 24563163 |c 529.15 GBP | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL3055034 | ||
938 | |a ebrary |b EBRY |n ebr10645149 | ||
938 | |a EBSCOhost |b EBSC |n 522001 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis24563163 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000126792 | ||
938 | |a YBP Library Services |b YANK |n 9975779 | ||
938 | |a YBP Library Services |b YANK |n 10253351 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn826443506 |
---|---|
_version_ | 1816882220695027712 |
adam_text | |
any_adam_object | |
author2 | Damien, Paul, 1960- Dellaportas, Petros Polson, Nicholas G., 1963- Stephens, David A. |
author2_role | edt edt edt edt |
author2_variant | p d pd p d pd n g p ng ngp d a s da das |
author_GND | http://id.loc.gov/authorities/names/no2008086466 http://id.loc.gov/authorities/names/n94101895 |
author_facet | Damien, Paul, 1960- Dellaportas, Petros Polson, Nicholas G., 1963- Stephens, David A. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279.5 |
callnumber-search | QA279.5 |
callnumber-sort | QA 3279.5 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | ""Cover""; ""Contents""; ""Contributors""; ""Introduction""; ""Part I: Exchangeability""; ""1 Observables and models: exchangeability and the inductive argument""; ""2 Exchangeability and its ramifications""; ""Part II: Hierarchical Models""; ""3 Hierarchical modelling""; ""4 Bayesian hierarchical kernel machines for nonlinear regression and classification""; ""5 Flexible Bayesian modelling for clustered categorical responses in developmental toxicology""; ""Part III: Markov Chain Monte Carlo""; ""6 Markov chain Monte Carlo methods""; ""7 Advances in Markov chain Monte Carlo"" ""Part IV: Dynamic Models""""8 Bayesian dynamic modelling""; ""9 Hierarchical modelling in time series: the factor analytic approach""; ""10 Dynamic and spatial modelling of block maxima extremes""; ""Part V: Sequential Monte Carlo""; ""11 Online Bayesian learning in dynamic models: an illustrative introduction to particle methods""; ""12 Semi-supervised classification of texts using particle learning for probabilistic automata""; ""Part VI: Nonparametrics""; ""13 Bayesian nonparametrics""; ""14 Geometric weight priors and their applications"" ""15 Revisiting Bayesian curve fitting using multivariate normal mixtures""""Part VII: Spline Models and Copulas""; ""16 Applications of Bayesian smoothing splines""; ""17 Bayesian approaches to copula modelling""; ""Part VIII: Model Elaboration and Prior Distributions""; ""18 Hypothesis testing and model uncertainty""; ""19 Proper and non-informative conjugate priors for exponential family models""; ""20 Bayesian model specification: heuristics and examples""; ""21 Case studies in Bayesian screening for time-varying model structure: the partition problem"" ""Part IX: Regressions and Model Averaging""""22 Bayesian regression structure discovery""; ""23 Gibbs sampling for ordinary, robust and logistic regression with Laplace priors""; ""24 Bayesian model averaging in the M-open framework""; ""Part X: Finance and Actuarial Science""; ""25 Asset allocation in finance: a Bayesian perspective""; ""26 Markov chain Monte Carlo methods in corporate finance""; ""27 Actuarial credibility theory and Bayesian statistics�the story of a special evolution""; ""Part XI: Medicine and Biostatistics""; ""28 Bayesian models in biostatistics and medicine"" ""29 Subgroup analysis""""30 Surviving fully Bayesian nonparametric regression models""; ""Part XII: Inverse Problems and Applications""; ""31 Inverse problems""; ""32 Approximate marginalization over modelling errors and uncertainties in inverse problems""; ""33 Bayesian reconstruction of particle beam phase space""; ""Adrian Smith�s research supervision (PhD)""; ""Adrian Smith�s publications""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Z"" |
ctrlnum | (OCoLC)826443506 |
dewey-full | 519.5/42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.5/42 |
dewey-search | 519.5/42 |
dewey-sort | 3519.5 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06132cam a2200673 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn826443506</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120912s2013 enka fob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CDX</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">E7B</subfield><subfield code="d">STF</subfield><subfield code="d">OKU</subfield><subfield code="d">CUS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">COO</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STBDS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBBG</subfield><subfield code="d">BUF</subfield><subfield code="d">WYU</subfield><subfield code="d">YOU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COA</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">922972076</subfield><subfield code="a">992884903</subfield><subfield code="a">1058937531</subfield><subfield code="a">1340069506</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191647000</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191647004</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199695607</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199695601</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781283950404</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1283950405</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">(WaSeSS)ssj0000913170</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)826443506</subfield><subfield code="z">(OCoLC)922972076</subfield><subfield code="z">(OCoLC)992884903</subfield><subfield code="z">(OCoLC)1058937531</subfield><subfield code="z">(OCoLC)1340069506</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA279.5</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">eflch</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.5/42</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Bayesian theory and applications /</subfield><subfield code="c">edited by Paul Damien, Petros Dellaportas, Nicholas G. Polson, & David A. Stephens.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 702 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">""Cover""; ""Contents""; ""Contributors""; ""Introduction""; ""Part I: Exchangeability""; ""1 Observables and models: exchangeability and the inductive argument""; ""2 Exchangeability and its ramifications""; ""Part II: Hierarchical Models""; ""3 Hierarchical modelling""; ""4 Bayesian hierarchical kernel machines for nonlinear regression and classification""; ""5 Flexible Bayesian modelling for clustered categorical responses in developmental toxicology""; ""Part III: Markov Chain Monte Carlo""; ""6 Markov chain Monte Carlo methods""; ""7 Advances in Markov chain Monte Carlo""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""Part IV: Dynamic Models""""8 Bayesian dynamic modelling""; ""9 Hierarchical modelling in time series: the factor analytic approach""; ""10 Dynamic and spatial modelling of block maxima extremes""; ""Part V: Sequential Monte Carlo""; ""11 Online Bayesian learning in dynamic models: an illustrative introduction to particle methods""; ""12 Semi-supervised classification of texts using particle learning for probabilistic automata""; ""Part VI: Nonparametrics""; ""13 Bayesian nonparametrics""; ""14 Geometric weight priors and their applications""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""15 Revisiting Bayesian curve fitting using multivariate normal mixtures""""Part VII: Spline Models and Copulas""; ""16 Applications of Bayesian smoothing splines""; ""17 Bayesian approaches to copula modelling""; ""Part VIII: Model Elaboration and Prior Distributions""; ""18 Hypothesis testing and model uncertainty""; ""19 Proper and non-informative conjugate priors for exponential family models""; ""20 Bayesian model specification: heuristics and examples""; ""21 Case studies in Bayesian screening for time-varying model structure: the partition problem""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""Part IX: Regressions and Model Averaging""""22 Bayesian regression structure discovery""; ""23 Gibbs sampling for ordinary, robust and logistic regression with Laplace priors""; ""24 Bayesian model averaging in the M-open framework""; ""Part X: Finance and Actuarial Science""; ""25 Asset allocation in finance: a Bayesian perspective""; ""26 Markov chain Monte Carlo methods in corporate finance""; ""27 Actuarial credibility theory and Bayesian statisticsâ€?the story of a special evolution""; ""Part XI: Medicine and Biostatistics""; ""28 Bayesian models in biostatistics and medicine""</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">""29 Subgroup analysis""""30 Surviving fully Bayesian nonparametric regression models""; ""Part XII: Inverse Problems and Applications""; ""31 Inverse problems""; ""32 Approximate marginalization over modelling errors and uncertainties in inverse problems""; ""33 Bayesian reconstruction of particle beam phase space""; ""Adrian Smithâ€?s research supervision (PhD)""; ""Adrian Smithâ€?s publications""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Z""</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Bayesian statistical decision theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85012506</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de la décision bayésienne.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">Bayesian Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Damien, Paul,</subfield><subfield code="d">1960-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkxJ7KR4Dgk7m4MrCTyh3</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2008086466</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dellaportas, Petros,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polson, Nicholas G.,</subfield><subfield code="d">1963-</subfield><subfield code="e">editor.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkp8J3pDxd8pcyxqGqqQq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n94101895</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stephens, David A.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Bayesian theory and applications.</subfield><subfield code="b">First edition.</subfield><subfield code="d">Oxford : Oxford University Press, 2013</subfield><subfield code="z">9780199695607</subfield><subfield code="w">(OCoLC)836808590</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=522001</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">24563163</subfield><subfield code="c">529.15 GBP</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3055034</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10645149</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">522001</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis24563163</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000126792</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9975779</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10253351</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn826443506 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:09Z |
institution | BVB |
isbn | 9780191647000 0191647004 9780199695607 0199695601 |
language | English |
oclc_num | 826443506 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 702 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Bayesian theory and applications / edited by Paul Damien, Petros Dellaportas, Nicholas G. Polson, & David A. Stephens. Oxford : Oxford University Press, 2013. 1 online resource (xi, 702 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field. Print version record. Includes bibliographical references. ""Cover""; ""Contents""; ""Contributors""; ""Introduction""; ""Part I: Exchangeability""; ""1 Observables and models: exchangeability and the inductive argument""; ""2 Exchangeability and its ramifications""; ""Part II: Hierarchical Models""; ""3 Hierarchical modelling""; ""4 Bayesian hierarchical kernel machines for nonlinear regression and classification""; ""5 Flexible Bayesian modelling for clustered categorical responses in developmental toxicology""; ""Part III: Markov Chain Monte Carlo""; ""6 Markov chain Monte Carlo methods""; ""7 Advances in Markov chain Monte Carlo"" ""Part IV: Dynamic Models""""8 Bayesian dynamic modelling""; ""9 Hierarchical modelling in time series: the factor analytic approach""; ""10 Dynamic and spatial modelling of block maxima extremes""; ""Part V: Sequential Monte Carlo""; ""11 Online Bayesian learning in dynamic models: an illustrative introduction to particle methods""; ""12 Semi-supervised classification of texts using particle learning for probabilistic automata""; ""Part VI: Nonparametrics""; ""13 Bayesian nonparametrics""; ""14 Geometric weight priors and their applications"" ""15 Revisiting Bayesian curve fitting using multivariate normal mixtures""""Part VII: Spline Models and Copulas""; ""16 Applications of Bayesian smoothing splines""; ""17 Bayesian approaches to copula modelling""; ""Part VIII: Model Elaboration and Prior Distributions""; ""18 Hypothesis testing and model uncertainty""; ""19 Proper and non-informative conjugate priors for exponential family models""; ""20 Bayesian model specification: heuristics and examples""; ""21 Case studies in Bayesian screening for time-varying model structure: the partition problem"" ""Part IX: Regressions and Model Averaging""""22 Bayesian regression structure discovery""; ""23 Gibbs sampling for ordinary, robust and logistic regression with Laplace priors""; ""24 Bayesian model averaging in the M-open framework""; ""Part X: Finance and Actuarial Science""; ""25 Asset allocation in finance: a Bayesian perspective""; ""26 Markov chain Monte Carlo methods in corporate finance""; ""27 Actuarial credibility theory and Bayesian statisticsâ€?the story of a special evolution""; ""Part XI: Medicine and Biostatistics""; ""28 Bayesian models in biostatistics and medicine"" ""29 Subgroup analysis""""30 Surviving fully Bayesian nonparametric regression models""; ""Part XII: Inverse Problems and Applications""; ""31 Inverse problems""; ""32 Approximate marginalization over modelling errors and uncertainties in inverse problems""; ""33 Bayesian reconstruction of particle beam phase space""; ""Adrian Smithâ€?s research supervision (PhD)""; ""Adrian Smithâ€?s publications""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Z"" Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. bisacsh Bayesian statistical decision theory fast Damien, Paul, 1960- editor. https://id.oclc.org/worldcat/entity/E39PBJkxJ7KR4Dgk7m4MrCTyh3 http://id.loc.gov/authorities/names/no2008086466 Dellaportas, Petros, editor. Polson, Nicholas G., 1963- editor. https://id.oclc.org/worldcat/entity/E39PBJkp8J3pDxd8pcyxqGqqQq http://id.loc.gov/authorities/names/n94101895 Stephens, David A., editor. Print version: Bayesian theory and applications. First edition. Oxford : Oxford University Press, 2013 9780199695607 (OCoLC)836808590 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=522001 Volltext |
spellingShingle | Bayesian theory and applications / ""Cover""; ""Contents""; ""Contributors""; ""Introduction""; ""Part I: Exchangeability""; ""1 Observables and models: exchangeability and the inductive argument""; ""2 Exchangeability and its ramifications""; ""Part II: Hierarchical Models""; ""3 Hierarchical modelling""; ""4 Bayesian hierarchical kernel machines for nonlinear regression and classification""; ""5 Flexible Bayesian modelling for clustered categorical responses in developmental toxicology""; ""Part III: Markov Chain Monte Carlo""; ""6 Markov chain Monte Carlo methods""; ""7 Advances in Markov chain Monte Carlo"" ""Part IV: Dynamic Models""""8 Bayesian dynamic modelling""; ""9 Hierarchical modelling in time series: the factor analytic approach""; ""10 Dynamic and spatial modelling of block maxima extremes""; ""Part V: Sequential Monte Carlo""; ""11 Online Bayesian learning in dynamic models: an illustrative introduction to particle methods""; ""12 Semi-supervised classification of texts using particle learning for probabilistic automata""; ""Part VI: Nonparametrics""; ""13 Bayesian nonparametrics""; ""14 Geometric weight priors and their applications"" ""15 Revisiting Bayesian curve fitting using multivariate normal mixtures""""Part VII: Spline Models and Copulas""; ""16 Applications of Bayesian smoothing splines""; ""17 Bayesian approaches to copula modelling""; ""Part VIII: Model Elaboration and Prior Distributions""; ""18 Hypothesis testing and model uncertainty""; ""19 Proper and non-informative conjugate priors for exponential family models""; ""20 Bayesian model specification: heuristics and examples""; ""21 Case studies in Bayesian screening for time-varying model structure: the partition problem"" ""Part IX: Regressions and Model Averaging""""22 Bayesian regression structure discovery""; ""23 Gibbs sampling for ordinary, robust and logistic regression with Laplace priors""; ""24 Bayesian model averaging in the M-open framework""; ""Part X: Finance and Actuarial Science""; ""25 Asset allocation in finance: a Bayesian perspective""; ""26 Markov chain Monte Carlo methods in corporate finance""; ""27 Actuarial credibility theory and Bayesian statisticsâ€?the story of a special evolution""; ""Part XI: Medicine and Biostatistics""; ""28 Bayesian models in biostatistics and medicine"" ""29 Subgroup analysis""""30 Surviving fully Bayesian nonparametric regression models""; ""Part XII: Inverse Problems and Applications""; ""31 Inverse problems""; ""32 Approximate marginalization over modelling errors and uncertainties in inverse problems""; ""33 Bayesian reconstruction of particle beam phase space""; ""Adrian Smithâ€?s research supervision (PhD)""; ""Adrian Smithâ€?s publications""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""J""; ""K""; ""L""; ""M""; ""N""; ""O""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W""; ""Z"" Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. bisacsh Bayesian statistical decision theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85012506 |
title | Bayesian theory and applications / |
title_auth | Bayesian theory and applications / |
title_exact_search | Bayesian theory and applications / |
title_full | Bayesian theory and applications / edited by Paul Damien, Petros Dellaportas, Nicholas G. Polson, & David A. Stephens. |
title_fullStr | Bayesian theory and applications / edited by Paul Damien, Petros Dellaportas, Nicholas G. Polson, & David A. Stephens. |
title_full_unstemmed | Bayesian theory and applications / edited by Paul Damien, Petros Dellaportas, Nicholas G. Polson, & David A. Stephens. |
title_short | Bayesian theory and applications / |
title_sort | bayesian theory and applications |
topic | Bayesian statistical decision theory. http://id.loc.gov/authorities/subjects/sh85012506 Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. bisacsh Bayesian statistical decision theory fast |
topic_facet | Bayesian statistical decision theory. Théorie de la décision bayésienne. MATHEMATICS Probability & Statistics Bayesian Analysis. Bayesian statistical decision theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=522001 |
work_keys_str_mv | AT damienpaul bayesiantheoryandapplications AT dellaportaspetros bayesiantheoryandapplications AT polsonnicholasg bayesiantheoryandapplications AT stephensdavida bayesiantheoryandapplications |