An introduction to Finsler geometry /:
This introductory book uses the moving frame as a tool and develops Finsler geometry on the basis of the Chern connection and the projective sphere bundle. It systematically introduces three classes of geometrical invariants on Finsler manifolds and their intrinsic relations, analyzes local and glob...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, NJ :
World Scientific,
©2006.
|
Schriftenreihe: | Peking University series in mathematics ;
v. 1. |
Schlagworte: | |
Online-Zugang: | DE-862 DE-863 |
Zusammenfassung: | This introductory book uses the moving frame as a tool and develops Finsler geometry on the basis of the Chern connection and the projective sphere bundle. It systematically introduces three classes of geometrical invariants on Finsler manifolds and their intrinsic relations, analyzes local and global results from classic and modern Finsler geometry, and gives non-trivial examples of Finsler manifolds satisfying different curvature conditions. |
Beschreibung: | 1 online resource (viii, 120 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 117-118) and index. |
ISBN: | 9789812773715 9812773711 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn824698994 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130121s2006 si a ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d IDEBK |d E7B |d OCLCF |d YDXCP |d EBLCP |d DEBSZ |d OCLCQ |d LOA |d JBG |d COCUF |d AGLDB |d MOR |d CCO |d PIFAG |d MERUC |d OCLCQ |d ZCU |d U3W |d STF |d WRM |d VTS |d NRAMU |d ICG |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d DKC |d AU@ |d OCLCQ |d M8D |d UKAHL |d OCLCQ |d UKCRE |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d CLOUD | ||
019 | |a 666958608 |a 854973177 |a 960207476 |a 961564196 |a 962703398 |a 966253589 |a 988516210 |a 992112928 |a 1037710422 |a 1038695477 |a 1045472082 |a 1055387535 |a 1066647028 |a 1081210776 |a 1153466901 |a 1228619134 | ||
020 | |a 9789812773715 |q (electronic bk.) | ||
020 | |a 9812773711 |q (electronic bk.) | ||
020 | |z 9812567933 | ||
020 | |z 9789812567932 | ||
035 | |a (OCoLC)824698994 |z (OCoLC)666958608 |z (OCoLC)854973177 |z (OCoLC)960207476 |z (OCoLC)961564196 |z (OCoLC)962703398 |z (OCoLC)966253589 |z (OCoLC)988516210 |z (OCoLC)992112928 |z (OCoLC)1037710422 |z (OCoLC)1038695477 |z (OCoLC)1045472082 |z (OCoLC)1055387535 |z (OCoLC)1066647028 |z (OCoLC)1081210776 |z (OCoLC)1153466901 |z (OCoLC)1228619134 | ||
050 | 4 | |a QA689 |b .M59 2006eb | |
072 | 7 | |a MAT |x 012020 |2 bisacsh | |
082 | 7 | |a 516.375 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Mo, Xiaohuan. | |
245 | 1 | 3 | |a An introduction to Finsler geometry / |c Xiaohuan Mo. |
260 | |a Singapore ; |a Hackensack, NJ : |b World Scientific, |c ©2006. | ||
300 | |a 1 online resource (viii, 120 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Peking University series in mathematics ; |v v. 1 | |
504 | |a Includes bibliographical references (pages 117-118) and index. | ||
505 | 0 | |a Finsler manifolds -- Geometric quantities on a Minkowski space -- Chern connection -- Covariant differentiation and second class of geometric invariants -- Riemann invariants and variations of arc length -- Geometry of projective sphere bundle -- Relation among three classes of invariants -- Finsler manifolds with scalar curvature -- Harmonic maps from Finsler manifolds. | |
588 | 0 | |a Print version record. | |
520 | |a This introductory book uses the moving frame as a tool and develops Finsler geometry on the basis of the Chern connection and the projective sphere bundle. It systematically introduces three classes of geometrical invariants on Finsler manifolds and their intrinsic relations, analyzes local and global results from classic and modern Finsler geometry, and gives non-trivial examples of Finsler manifolds satisfying different curvature conditions. | ||
650 | 0 | |a Finsler spaces. |0 http://id.loc.gov/authorities/subjects/sh85048439 | |
650 | 0 | |a Manifolds (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh85080549 | |
650 | 0 | |a Geometry, Riemannian. |0 http://id.loc.gov/authorities/subjects/sh85054159 | |
650 | 6 | |a Espaces de Finsler. | |
650 | 6 | |a Variétés (Mathématiques) | |
650 | 6 | |a Géométrie de Riemann. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Analytic. |2 bisacsh | |
650 | 7 | |a Finsler spaces |2 fast | |
650 | 7 | |a Geometry, Riemannian |2 fast | |
650 | 7 | |a Manifolds (Mathematics) |2 fast | |
655 | 0 | |a Electronic books. | |
776 | 0 | 8 | |i Print version: |a Mo, Xiaohuan. |t Introduction to Finsler geometry. |d Singapore ; Hackensack, NJ : World Scientific, ©2006 |z 9812567933 |w (DLC) 2006284743 |w (OCoLC)70787903 |
830 | 0 | |a Peking University series in mathematics ; |v v. 1. |0 http://id.loc.gov/authorities/names/no2006092820 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514847 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514847 |3 Volltext |
938 | |a cloudLibrary |b CLDL |n 9789812773715 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH24684460 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1214919 | ||
938 | |a ebrary |b EBRY |n ebr10698886 | ||
938 | |a EBSCOhost |b EBSC |n 514847 | ||
938 | |a YBP Library Services |b YANK |n 9966098 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn824698994 |
---|---|
_version_ | 1829094947016409088 |
adam_text | |
any_adam_object | |
author | Mo, Xiaohuan |
author_facet | Mo, Xiaohuan |
author_role | |
author_sort | Mo, Xiaohuan |
author_variant | x m xm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA689 |
callnumber-raw | QA689 .M59 2006eb |
callnumber-search | QA689 .M59 2006eb |
callnumber-sort | QA 3689 M59 42006EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Finsler manifolds -- Geometric quantities on a Minkowski space -- Chern connection -- Covariant differentiation and second class of geometric invariants -- Riemann invariants and variations of arc length -- Geometry of projective sphere bundle -- Relation among three classes of invariants -- Finsler manifolds with scalar curvature -- Harmonic maps from Finsler manifolds. |
ctrlnum | (OCoLC)824698994 |
dewey-full | 516.375 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.375 |
dewey-search | 516.375 |
dewey-sort | 3516.375 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04031cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn824698994</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130121s2006 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">JBG</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">CLOUD</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">666958608</subfield><subfield code="a">854973177</subfield><subfield code="a">960207476</subfield><subfield code="a">961564196</subfield><subfield code="a">962703398</subfield><subfield code="a">966253589</subfield><subfield code="a">988516210</subfield><subfield code="a">992112928</subfield><subfield code="a">1037710422</subfield><subfield code="a">1038695477</subfield><subfield code="a">1045472082</subfield><subfield code="a">1055387535</subfield><subfield code="a">1066647028</subfield><subfield code="a">1081210776</subfield><subfield code="a">1153466901</subfield><subfield code="a">1228619134</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812773715</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812773711</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812567933</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812567932</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)824698994</subfield><subfield code="z">(OCoLC)666958608</subfield><subfield code="z">(OCoLC)854973177</subfield><subfield code="z">(OCoLC)960207476</subfield><subfield code="z">(OCoLC)961564196</subfield><subfield code="z">(OCoLC)962703398</subfield><subfield code="z">(OCoLC)966253589</subfield><subfield code="z">(OCoLC)988516210</subfield><subfield code="z">(OCoLC)992112928</subfield><subfield code="z">(OCoLC)1037710422</subfield><subfield code="z">(OCoLC)1038695477</subfield><subfield code="z">(OCoLC)1045472082</subfield><subfield code="z">(OCoLC)1055387535</subfield><subfield code="z">(OCoLC)1066647028</subfield><subfield code="z">(OCoLC)1081210776</subfield><subfield code="z">(OCoLC)1153466901</subfield><subfield code="z">(OCoLC)1228619134</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA689</subfield><subfield code="b">.M59 2006eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.375</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mo, Xiaohuan.</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An introduction to Finsler geometry /</subfield><subfield code="c">Xiaohuan Mo.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, NJ :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (viii, 120 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Peking University series in mathematics ;</subfield><subfield code="v">v. 1</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 117-118) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Finsler manifolds -- Geometric quantities on a Minkowski space -- Chern connection -- Covariant differentiation and second class of geometric invariants -- Riemann invariants and variations of arc length -- Geometry of projective sphere bundle -- Relation among three classes of invariants -- Finsler manifolds with scalar curvature -- Harmonic maps from Finsler manifolds.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This introductory book uses the moving frame as a tool and develops Finsler geometry on the basis of the Chern connection and the projective sphere bundle. It systematically introduces three classes of geometrical invariants on Finsler manifolds and their intrinsic relations, analyzes local and global results from classic and modern Finsler geometry, and gives non-trivial examples of Finsler manifolds satisfying different curvature conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Finsler spaces.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85048439</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85080549</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Riemannian.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054159</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espaces de Finsler.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Variétés (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Analytic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Finsler spaces</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Riemannian</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Manifolds (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="0"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Mo, Xiaohuan.</subfield><subfield code="t">Introduction to Finsler geometry.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, ©2006</subfield><subfield code="z">9812567933</subfield><subfield code="w">(DLC) 2006284743</subfield><subfield code="w">(OCoLC)70787903</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Peking University series in mathematics ;</subfield><subfield code="v">v. 1.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2006092820</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514847</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514847</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">cloudLibrary</subfield><subfield code="b">CLDL</subfield><subfield code="n">9789812773715</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24684460</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1214919</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10698886</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">514847</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9966098</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Electronic books. |
genre_facet | Electronic books. |
id | ZDB-4-EBA-ocn824698994 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:41:13Z |
institution | BVB |
isbn | 9789812773715 9812773711 |
language | English |
oclc_num | 824698994 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (viii, 120 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific, |
record_format | marc |
series | Peking University series in mathematics ; |
series2 | Peking University series in mathematics ; |
spelling | Mo, Xiaohuan. An introduction to Finsler geometry / Xiaohuan Mo. Singapore ; Hackensack, NJ : World Scientific, ©2006. 1 online resource (viii, 120 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Peking University series in mathematics ; v. 1 Includes bibliographical references (pages 117-118) and index. Finsler manifolds -- Geometric quantities on a Minkowski space -- Chern connection -- Covariant differentiation and second class of geometric invariants -- Riemann invariants and variations of arc length -- Geometry of projective sphere bundle -- Relation among three classes of invariants -- Finsler manifolds with scalar curvature -- Harmonic maps from Finsler manifolds. Print version record. This introductory book uses the moving frame as a tool and develops Finsler geometry on the basis of the Chern connection and the projective sphere bundle. It systematically introduces three classes of geometrical invariants on Finsler manifolds and their intrinsic relations, analyzes local and global results from classic and modern Finsler geometry, and gives non-trivial examples of Finsler manifolds satisfying different curvature conditions. Finsler spaces. http://id.loc.gov/authorities/subjects/sh85048439 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Espaces de Finsler. Variétés (Mathématiques) Géométrie de Riemann. MATHEMATICS Geometry Analytic. bisacsh Finsler spaces fast Geometry, Riemannian fast Manifolds (Mathematics) fast Electronic books. Print version: Mo, Xiaohuan. Introduction to Finsler geometry. Singapore ; Hackensack, NJ : World Scientific, ©2006 9812567933 (DLC) 2006284743 (OCoLC)70787903 Peking University series in mathematics ; v. 1. http://id.loc.gov/authorities/names/no2006092820 |
spellingShingle | Mo, Xiaohuan An introduction to Finsler geometry / Peking University series in mathematics ; Finsler manifolds -- Geometric quantities on a Minkowski space -- Chern connection -- Covariant differentiation and second class of geometric invariants -- Riemann invariants and variations of arc length -- Geometry of projective sphere bundle -- Relation among three classes of invariants -- Finsler manifolds with scalar curvature -- Harmonic maps from Finsler manifolds. Finsler spaces. http://id.loc.gov/authorities/subjects/sh85048439 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Espaces de Finsler. Variétés (Mathématiques) Géométrie de Riemann. MATHEMATICS Geometry Analytic. bisacsh Finsler spaces fast Geometry, Riemannian fast Manifolds (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85048439 http://id.loc.gov/authorities/subjects/sh85080549 http://id.loc.gov/authorities/subjects/sh85054159 |
title | An introduction to Finsler geometry / |
title_auth | An introduction to Finsler geometry / |
title_exact_search | An introduction to Finsler geometry / |
title_full | An introduction to Finsler geometry / Xiaohuan Mo. |
title_fullStr | An introduction to Finsler geometry / Xiaohuan Mo. |
title_full_unstemmed | An introduction to Finsler geometry / Xiaohuan Mo. |
title_short | An introduction to Finsler geometry / |
title_sort | introduction to finsler geometry |
topic | Finsler spaces. http://id.loc.gov/authorities/subjects/sh85048439 Manifolds (Mathematics) http://id.loc.gov/authorities/subjects/sh85080549 Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Espaces de Finsler. Variétés (Mathématiques) Géométrie de Riemann. MATHEMATICS Geometry Analytic. bisacsh Finsler spaces fast Geometry, Riemannian fast Manifolds (Mathematics) fast |
topic_facet | Finsler spaces. Manifolds (Mathematics) Geometry, Riemannian. Espaces de Finsler. Variétés (Mathématiques) Géométrie de Riemann. MATHEMATICS Geometry Analytic. Finsler spaces Geometry, Riemannian Electronic books. |
work_keys_str_mv | AT moxiaohuan anintroductiontofinslergeometry AT moxiaohuan introductiontofinslergeometry |