Google's PageRank and Beyond - the Science of Search Engine Rankings.:
Annotation
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton : Ewing :
Princeton University Press California Princeton Fulfillment Services [distributor]
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Annotation |
Beschreibung: | 1 online resource |
Zielpublikum: | College Audience |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780691152660 0691152667 9781400830329 140083032X |
Internformat
MARC
LEADER | 00000cam a2200000M 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn823941199 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 110516e20120218nju eo 000 0 eng d | ||
040 | |a BIP US |b eng |e pn |c S4S |d OCLCQ |d WYU |d AGLDB |d OCLCQ |d NETUE |d LGG |d UMI |d COO |d JSTOR |d DEBSZ |d N$T |d TEFOD |d DEBBG |d JBG |d CUS |d LIV |d IOG |d EZ9 |d OCLCF |d VTS |d CEF |d AU@ |d LVT |d MQY |d M8D |d UKAHL |d BRF |d OCLCO |d OCLCL | ||
019 | |a 815649065 |a 826866929 |a 992819054 |a 1058169017 |a 1264834978 | ||
020 | |a 9780691152660 | ||
020 | |a 0691152667 |q (Trade Paper) | ||
020 | |a 9781400830329 |q (electronic bk.) | ||
020 | |a 140083032X |q (electronic bk.) | ||
035 | |a (OCoLC)823941199 |z (OCoLC)815649065 |z (OCoLC)826866929 |z (OCoLC)992819054 |z (OCoLC)1058169017 |z (OCoLC)1264834978 | ||
037 | |b 00021620 | ||
050 | 4 | |a Internet Access |b ASAV | |
072 | 7 | |a MAT000000 |2 bisacsh | |
072 | 7 | |a COM060090 |2 bisacsh | |
072 | 7 | |a COM060120 |2 bisacsh | |
072 | 7 | |a COM051300 |2 bisacsh | |
072 | 7 | |a LAN |x 025000 |2 bisacsh | |
082 | 7 | |a 025.0425 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Langville, Amy N., |e author. | |
245 | 1 | 0 | |a Google's PageRank and Beyond - the Science of Search Engine Rankings. |
260 | |a Princeton : |b Princeton University Press |a Ewing : |b California Princeton Fulfillment Services [distributor] | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
521 | |a College Audience |b Princeton University Press. | ||
520 | 8 | |a Annotation |b <p>Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other web pages always appear at the top? What creates these powerful rankings? And how? The first book ever about the science of web page rankings,<i>Google's PageRank and Beyond</i>supplies the answers to these and other questions and more.</p><p>The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research.</p><p>The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text.</p><p>Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided.</p><ul><li>Many illustrative examples and entertaining asides</li><li>MATLAB code</li><li>Accessible and informal style</li><li>Complete and self-contained section for mathematics review</li></ul> | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Introduction to web search engines -- Crawling, indexing, and query processing -- Ranking webpages by popularity -- The mathematics of Google's PageRank -- Parameters in the PageRank model -- The sensitivity of PageRank -- The PageRank problem as a linear system -- Issues in large-scale implementation of PageRank -- Accelerating the computation of PageRank -- Updating the PageRank vector -- The HITS method for ranking webpages -- Other link methods for ranking webpages -- The future of web information retrieval -- Resources for web information retrieval -- The mathematics guide. | |
630 | 0 | 0 | |a Google. |0 http://id.loc.gov/authorities/names/nr2003021731 |
630 | 0 | 7 | |a Google. |2 blmlsh |
630 | 0 | 7 | |a Google |2 fast |
650 | 0 | |a Web sites |x Ratings and rankings |x Mathematics. | |
650 | 0 | |a Web search engines. |0 http://id.loc.gov/authorities/subjects/sh97007463 | |
650 | 0 | |a Internet searching |x Mathematics. | |
650 | 0 | |a World Wide Web |x Subject access |x Mathematics. | |
650 | 6 | |a Sites Web |x Classement |x Mathématiques. | |
650 | 6 | |a Moteurs de recherche sur Internet. | |
650 | 6 | |a Recherche sur Internet |x Mathématiques. | |
650 | 6 | |a Web |x Accès par sujet |x Mathématiques. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a LANGUAGE ARTS & DISCIPLINES |x Library & Information Science |x General. |2 bisacsh | |
650 | 7 | |a Web search engines |2 fast | |
700 | 1 | |a Meyer, Carl D., |e author. | |
758 | |i has work: |a Google's PageRank and beyond (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGJdTwfFhfcD37QwQ3VR83 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=310271 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH26387542 | ||
938 | |a EBSCOhost |b EBSC |n 310271 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn823941199 |
---|---|
_version_ | 1816882219347607552 |
adam_text | |
any_adam_object | |
author | Langville, Amy N. Meyer, Carl D. |
author_facet | Langville, Amy N. Meyer, Carl D. |
author_role | aut aut |
author_sort | Langville, Amy N. |
author_variant | a n l an anl c d m cd cdm |
building | Verbundindex |
bvnumber | localFWS |
callnumber-label | INTERNET ACCESS |
callnumber-raw | Internet Access ASAV |
callnumber-search | Internet Access ASAV |
callnumber-sort | INTERNET _ACCESS ASAV |
collection | ZDB-4-EBA |
contents | Introduction to web search engines -- Crawling, indexing, and query processing -- Ranking webpages by popularity -- The mathematics of Google's PageRank -- Parameters in the PageRank model -- The sensitivity of PageRank -- The PageRank problem as a linear system -- Issues in large-scale implementation of PageRank -- Accelerating the computation of PageRank -- Updating the PageRank vector -- The HITS method for ranking webpages -- Other link methods for ranking webpages -- The future of web information retrieval -- Resources for web information retrieval -- The mathematics guide. |
ctrlnum | (OCoLC)823941199 |
dewey-full | 025.0425 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 025 - Operations of libraries and archives |
dewey-raw | 025.0425 |
dewey-search | 025.0425 |
dewey-sort | 225.0425 |
dewey-tens | 020 - Library and information sciences |
discipline | Allgemeines |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05015cam a2200661M 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn823941199</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">110516e20120218nju eo 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">BIP US</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">S4S</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NETUE</subfield><subfield code="d">LGG</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">JSTOR</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">N$T</subfield><subfield code="d">TEFOD</subfield><subfield code="d">DEBBG</subfield><subfield code="d">JBG</subfield><subfield code="d">CUS</subfield><subfield code="d">LIV</subfield><subfield code="d">IOG</subfield><subfield code="d">EZ9</subfield><subfield code="d">OCLCF</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">AU@</subfield><subfield code="d">LVT</subfield><subfield code="d">MQY</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">BRF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">815649065</subfield><subfield code="a">826866929</subfield><subfield code="a">992819054</subfield><subfield code="a">1058169017</subfield><subfield code="a">1264834978</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691152660</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691152667</subfield><subfield code="q">(Trade Paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400830329</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">140083032X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)823941199</subfield><subfield code="z">(OCoLC)815649065</subfield><subfield code="z">(OCoLC)826866929</subfield><subfield code="z">(OCoLC)992819054</subfield><subfield code="z">(OCoLC)1058169017</subfield><subfield code="z">(OCoLC)1264834978</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="b">00021620</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Internet Access</subfield><subfield code="b">ASAV</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM060090</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM060120</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM051300</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">LAN</subfield><subfield code="x">025000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">025.0425</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Langville, Amy N.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Google's PageRank and Beyond - the Science of Search Engine Rankings.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press</subfield><subfield code="a">Ewing :</subfield><subfield code="b">California Princeton Fulfillment Services [distributor]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="521" ind1=" " ind2=" "><subfield code="a">College Audience</subfield><subfield code="b">Princeton University Press.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">Annotation</subfield><subfield code="b"><p>Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other web pages always appear at the top? What creates these powerful rankings? And how? The first book ever about the science of web page rankings,<i>Google's PageRank and Beyond</i>supplies the answers to these and other questions and more.</p><p>The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research.</p><p>The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text.</p><p>Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided.</p><ul><li>Many illustrative examples and entertaining asides</li><li>MATLAB code</li><li>Accessible and informal style</li><li>Complete and self-contained section for mathematics review</li></ul></subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction to web search engines -- Crawling, indexing, and query processing -- Ranking webpages by popularity -- The mathematics of Google's PageRank -- Parameters in the PageRank model -- The sensitivity of PageRank -- The PageRank problem as a linear system -- Issues in large-scale implementation of PageRank -- Accelerating the computation of PageRank -- Updating the PageRank vector -- The HITS method for ranking webpages -- Other link methods for ranking webpages -- The future of web information retrieval -- Resources for web information retrieval -- The mathematics guide.</subfield></datafield><datafield tag="630" ind1="0" ind2="0"><subfield code="a">Google.</subfield><subfield code="0">http://id.loc.gov/authorities/names/nr2003021731</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">Google.</subfield><subfield code="2">blmlsh</subfield></datafield><datafield tag="630" ind1="0" ind2="7"><subfield code="a">Google</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Web sites</subfield><subfield code="x">Ratings and rankings</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Web search engines.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh97007463</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Internet searching</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">World Wide Web</subfield><subfield code="x">Subject access</subfield><subfield code="x">Mathematics.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Sites Web</subfield><subfield code="x">Classement</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Moteurs de recherche sur Internet.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Recherche sur Internet</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Web</subfield><subfield code="x">Accès par sujet</subfield><subfield code="x">Mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">LANGUAGE ARTS & DISCIPLINES</subfield><subfield code="x">Library & Information Science</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Web search engines</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meyer, Carl D.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Google's PageRank and beyond (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGJdTwfFhfcD37QwQ3VR83</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=310271</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26387542</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">310271</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn823941199 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:08Z |
institution | BVB |
isbn | 9780691152660 0691152667 9781400830329 140083032X |
language | English |
oclc_num | 823941199 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Princeton University Press California Princeton Fulfillment Services [distributor] |
record_format | marc |
spelling | Langville, Amy N., author. Google's PageRank and Beyond - the Science of Search Engine Rankings. Princeton : Princeton University Press Ewing : California Princeton Fulfillment Services [distributor] 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier College Audience Princeton University Press. Annotation <p>Why doesn't your home page appear on the first page of search results, even when you query your own name? How do other web pages always appear at the top? What creates these powerful rankings? And how? The first book ever about the science of web page rankings,<i>Google's PageRank and Beyond</i>supplies the answers to these and other questions and more.</p><p>The book serves two very different audiences: the curious science reader and the technical computational reader. The chapters build in mathematical sophistication, so that the first five are accessible to the general academic reader. While other chapters are much more mathematical in nature, each one contains something for both audiences. For example, the authors include entertaining asides such as how search engines make money and how the Great Firewall of China influences research.</p><p>The book includes an extensive background chapter designed to help readers learn more about the mathematics of search engines, and it contains several MATLAB codes and links to sample web data sets. The philosophy throughout is to encourage readers to experiment with the ideas and algorithms in the text.</p><p>Any business seriously interested in improving its rankings in the major search engines can benefit from the clear examples, sample code, and list of resources provided.</p><ul><li>Many illustrative examples and entertaining asides</li><li>MATLAB code</li><li>Accessible and informal style</li><li>Complete and self-contained section for mathematics review</li></ul> Includes bibliographical references and index. Introduction to web search engines -- Crawling, indexing, and query processing -- Ranking webpages by popularity -- The mathematics of Google's PageRank -- Parameters in the PageRank model -- The sensitivity of PageRank -- The PageRank problem as a linear system -- Issues in large-scale implementation of PageRank -- Accelerating the computation of PageRank -- Updating the PageRank vector -- The HITS method for ranking webpages -- Other link methods for ranking webpages -- The future of web information retrieval -- Resources for web information retrieval -- The mathematics guide. Google. http://id.loc.gov/authorities/names/nr2003021731 Google. blmlsh Google fast Web sites Ratings and rankings Mathematics. Web search engines. http://id.loc.gov/authorities/subjects/sh97007463 Internet searching Mathematics. World Wide Web Subject access Mathematics. Sites Web Classement Mathématiques. Moteurs de recherche sur Internet. Recherche sur Internet Mathématiques. Web Accès par sujet Mathématiques. MATHEMATICS General. bisacsh LANGUAGE ARTS & DISCIPLINES Library & Information Science General. bisacsh Web search engines fast Meyer, Carl D., author. has work: Google's PageRank and beyond (Text) https://id.oclc.org/worldcat/entity/E39PCGJdTwfFhfcD37QwQ3VR83 https://id.oclc.org/worldcat/ontology/hasWork FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=310271 Volltext |
spellingShingle | Langville, Amy N. Meyer, Carl D. Google's PageRank and Beyond - the Science of Search Engine Rankings. Introduction to web search engines -- Crawling, indexing, and query processing -- Ranking webpages by popularity -- The mathematics of Google's PageRank -- Parameters in the PageRank model -- The sensitivity of PageRank -- The PageRank problem as a linear system -- Issues in large-scale implementation of PageRank -- Accelerating the computation of PageRank -- Updating the PageRank vector -- The HITS method for ranking webpages -- Other link methods for ranking webpages -- The future of web information retrieval -- Resources for web information retrieval -- The mathematics guide. Google. http://id.loc.gov/authorities/names/nr2003021731 Google. blmlsh Google fast Web sites Ratings and rankings Mathematics. Web search engines. http://id.loc.gov/authorities/subjects/sh97007463 Internet searching Mathematics. World Wide Web Subject access Mathematics. Sites Web Classement Mathématiques. Moteurs de recherche sur Internet. Recherche sur Internet Mathématiques. Web Accès par sujet Mathématiques. MATHEMATICS General. bisacsh LANGUAGE ARTS & DISCIPLINES Library & Information Science General. bisacsh Web search engines fast |
subject_GND | http://id.loc.gov/authorities/names/nr2003021731 http://id.loc.gov/authorities/subjects/sh97007463 |
title | Google's PageRank and Beyond - the Science of Search Engine Rankings. |
title_auth | Google's PageRank and Beyond - the Science of Search Engine Rankings. |
title_exact_search | Google's PageRank and Beyond - the Science of Search Engine Rankings. |
title_full | Google's PageRank and Beyond - the Science of Search Engine Rankings. |
title_fullStr | Google's PageRank and Beyond - the Science of Search Engine Rankings. |
title_full_unstemmed | Google's PageRank and Beyond - the Science of Search Engine Rankings. |
title_short | Google's PageRank and Beyond - the Science of Search Engine Rankings. |
title_sort | google s pagerank and beyond the science of search engine rankings |
topic | Google. http://id.loc.gov/authorities/names/nr2003021731 Google. blmlsh Google fast Web sites Ratings and rankings Mathematics. Web search engines. http://id.loc.gov/authorities/subjects/sh97007463 Internet searching Mathematics. World Wide Web Subject access Mathematics. Sites Web Classement Mathématiques. Moteurs de recherche sur Internet. Recherche sur Internet Mathématiques. Web Accès par sujet Mathématiques. MATHEMATICS General. bisacsh LANGUAGE ARTS & DISCIPLINES Library & Information Science General. bisacsh Web search engines fast |
topic_facet | Google. Web sites Ratings and rankings Mathematics. Web search engines. Internet searching Mathematics. World Wide Web Subject access Mathematics. Sites Web Classement Mathématiques. Moteurs de recherche sur Internet. Recherche sur Internet Mathématiques. Web Accès par sujet Mathématiques. MATHEMATICS General. LANGUAGE ARTS & DISCIPLINES Library & Information Science General. Web search engines |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=310271 |
work_keys_str_mv | AT langvilleamyn googlespagerankandbeyondthescienceofsearchenginerankings AT meyercarld googlespagerankandbeyondthescienceofsearchenginerankings |