Modeling solid-state precipitation /:
Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloyin...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
Momentum Press,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. |
Beschreibung: | Title from PDF title page (viewed on January 8, 2013). |
Beschreibung: | 1 online resource (1 online resource (xxxiii, 464 pages)) : illustrations, digital file |
Bibliographie: | Includes bibliographical references (pages 445-457) and index. |
ISBN: | 9781606500644 1606500643 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn823604565 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m eo d | ||
007 | cr cn||||m|||a | ||
008 | 130108s2013 nyua foab 001 0 eng d | ||
040 | |a CaBNvSL |b eng |e pn |c J2I |d J2I |d N$T |d UMI |d COO |d E7B |d UKMGB |d DEBSZ |d OCLCQ |d OCLCF |d OCLCQ |d TXI |d AGLDB |d CPO |d VGM |d OCLCQ |d UPM |d VTS |d TKN |d STF |d M8D |d UKAHL |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
016 | 7 | |a 016319126 |2 Uk | |
019 | |a 825071235 |a 1087445101 | ||
020 | |a 9781606500644 |q (electronic bk.) | ||
020 | |a 1606500643 |q (electronic bk.) | ||
020 | |z 9781606500620 |q (print) | ||
020 | |z 1606500627 |q (print) | ||
024 | 7 | |a 10.5643/9781606500644 |2 doi | |
035 | |a (OCoLC)823604565 |z (OCoLC)825071235 |z (OCoLC)1087445101 | ||
037 | |a CL0500000186 |b Safari Books Online | ||
050 | 4 | |a QD547 |b .K695 2013 | |
072 | 7 | |a SCI |x 013050 |2 bisacsh | |
082 | 7 | |a 541.33 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Kozeschnik, E. |q (Ernst) |1 https://id.oclc.org/worldcat/entity/E39PCjtC3gKt7H66XcvYCRjvjK |0 http://id.loc.gov/authorities/names/nb2013014109 | |
245 | 1 | 0 | |a Modeling solid-state precipitation / |c Ernst Kozeschnik. |
260 | |a [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : |b Momentum Press, |c 2013. | ||
300 | |a 1 online resource (1 online resource (xxxiii, 464 pages)) : |b illustrations, digital file | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
500 | |a Title from PDF title page (viewed on January 8, 2013). | ||
504 | |a Includes bibliographical references (pages 445-457) and index. | ||
505 | 0 | |a List of symbols -- List of figures -- List of tables -- Preface. | |
505 | 8 | |a 1. Thermodynamic basis of phase transformations -- 1.1 The Gibbs energy -- 1.2 Molar Gibbs energy and chemical potentials -- 1.3 Solution thermodynamics -- 1.3.1 Mechanical mixture and ideal solution -- 1.3.2 The regular solution -- 1.3.3 General solutions, the CALPHAD approach -- 1.4 Multiphase systems and driving force for precipitation -- 1.5 Curvature and elastic stress -- 1.5.1 The Gibbs-Thomson equation -- 1.5.2 Elastic misfit stress -- 1.6 Equilibrium structural vacancies. | |
505 | 8 | |a 2. Precipitate nucleation -- 2.1 Paving the way for nucleation theory -- 2.2 Nucleation of liquid droplets from supersaturated vapor -- 2.2.1 Thermodynamics of the critical nucleus -- 2.2.2 Overcoming the nucleation barrier -- 2.2.3 The kinetics of droplet formation -- 2.2.4 The Zeldovich factor -- 2.2.5 The time lag -- 2.2.6 Note on thermodynamic properties of small clusters -- 2.3 Solid-state nucleation -- 2.3.1 The precipitate-matrix interface -- 2.3.2 Free energy of nucleus formation -- 2.3.3 Steady-state nucleation rate in crystalline solids -- 2.3.4 Time-dependent nucleation -- 2.3.5 The volume misfit stress -- 2.3.6 Excess structural vacancies -- 2.4 Heterogeneous nucleation -- 2.4.1 Heterogeneous nucleation sites -- 2.4.2 Potential nucleation sites in a heterogeneous microstructure -- 2.4.3 Nucleation site saturation -- 2.4.4 Effective interfacial energies in heterogeneous nucleation -- 2.4.5 Grain boundary energy -- 2.5 Nucleation in multicomponent environment -- 2.5.1 CNT in multicomponent environment -- 2.5.2 The composition of the critical nucleus -- 2.6 Summary. | |
505 | 8 | |a 3. Diffusion-controlled precipitate growth and coarsening -- 3.1 Problem formulation -- 3.2 Diffusion-controlled growth with local thermodynamic equilibrium -- 3.2.1 Local equilibrium and composition profiles -- 3.2.2 Binary diffusion-controlled growth, the Zener model -- 3.2.3 The quasi-stationary solution for spherical precipitates -- 3.2.4 Analytical solution for high and low dimensionless supersaturation -- 3.2.5 Influence of capillarity on precipitate growth -- 3.3 Multicomponent diffusion-controlled growth -- 3.3.1 The multicomponent local equilibrium tie-lines -- 3.3.2 Fast and slow local equilibrium transformation regions -- 3.3.3 Local equilibrium controlled precipitation in multicomponent systems -- 3.3.4 Approximate treatment of multinary diffusional transformations -- 3.4 Energy dissipation at a moving phase boundary, the mixed-mode model -- 3.5 Mean-field evolution equations for precipitate growth -- 3.5.1 The thermodynamic extremal principle -- 3.5.2 Mean-field evolution equations for substitutional/interstital phases -- 3.5.3 Evolution equations for general sublattice phases -- 3.5.4 Comparison with local equilibrium based growth models -- 3.6 Precipitate coarsening -- 3.6.1 The lSW-theory of precipitate coarsening -- 3.6.2 Extensions of lSW theory for finite phase fraction effects -- 3.6.2.1 The modified lSW theory of Ardell -- 3.6.2.2 The Brailsford and Wynblatt theory -- 3.6.2.3 The Davies, Nash, and Stevens (LSEM) theory -- 3.6.2.4 The Tsumuraya and Miyata theory -- 3.6.2.5 The Marqusee and Ross theory -- 3.6.2.6 The Tokuyama and Kawasaki theory -- 3.6.2.7 The Voorhees and Glicksman theory -- 3.6.2.8 The Enomoto, Tokuyama, and Kawasaki theory -- 3.6.2.9 The Marder theory -- 3.6.3 Comparison of theories -- 3.6.4 Coarsening in multicomponent alloys -- 3.7 Summary. | |
505 | 8 | |a 4. Interfacial energy -- 4.1 The nearest-neighbor broken-bond model -- 4.2 Composition dependence of the precipitate-matrix interfacial energy -- 4.3 Generalization of the NNBB approach, the GBB model -- 4.3.1 Effective bond energies and broken bonds -- 4.3.2 Comparison between theory and experiment -- 4.4 Interface energy correction for small precipitates -- 4.4.1 The interface energy size correction function -- 4.4.2 Comparison with size correction in vapor-droplet systems -- 4.5 Energy of diffuse interfaces -- 4.5.1 Free energy of a diffuse interface -- 4.5.2 Regular solution approximation for diffuse interfaces -- 4.5.3 Comparison with other models -- 4.6 Summary. | |
505 | 8 | |a 5. Numerical modeling of precipitation -- 5.1 Kolmogorov-Johnson-Mehl-Avrami (KJMA) model -- 5.1.1 Derivation of the KJMA equation -- 5.1.2 Analysis of KJMA parameters -- 5.1.3 Multiphase KJMA kinetics -- 5.2 Langer-Schwartz model -- 5.2.1 The original LS model -- 5.2.2 Modified Langer-Schwartz model -- 5.3 Kampmann-Wagner numerical model -- 5.4 General course of a phase decomposition -- 5.4.1 Heat treatments for precipitation -- 5.4.2 Stages in precipitate life -- 5.4.3 Evolution of precipitation parameters -- 5.4.4 Overlap of nucleation, growth, and coarsening -- 5.5 Summary. | |
505 | 8 | |a 6. Heterogeneous precipitation -- 6.1 Precipitation at grain boundaries -- 6.1.1 Problem formulation -- 6.1.2 Diffusive processes -- 6.1.3 Evolution equations for precipitate growth -- 6.1.4 Evolution equations for precipitate coarsening -- 6.1.5 Growth kinetics of equisized precipitates -- 6.1.6 Growth kinetics of nonequisized precipitates -- 6.1.7 Coarsening kinetics -- 6.2 Anisotropy and precipitate shape -- 6.2.1 Shape parameter, h, and SFFK evolution equations -- 6.2.2 Determination of shape factors -- 6.2.3 Comparing growth kinetics -- 6.3 Particle coalescence -- 6.3.1 Diffusion kinetics of clusters -- 6.3.2 Evolution of precipitation systems by coalescence -- 6.3.3 Simultaneous adsorption/evaporation and coalescence -- 6.3.4 Phenomenological treatment of particle coalescence -- 6.3.5 Comparison with experiment -- 6.4 Simultaneous precipitation and diffusion -- 6.4.1 Numerical treatment in the local-equilibrium limit -- 6.4.2 Comparison of local-equilibrium simulations with experiment -- 6.4.3 Coupled diffusion and precipitation kinetics. | |
505 | 8 | |a 7. Diffusion -- 7.1 Mechanisms of diffusion -- 7.1.1 Diffusion in crystalline materials -- 7.1.2 The principle of microscopic time reversal -- 7.1.3 Random walk treatment of diffusion -- 7.1.4 The Einstein-Smoluchowski equation -- 7.2 Macroscopic models of diffusion -- 7.2.1 Phenomenological laws of diffusion -- 7.2.2 Special solutions of Fick's second law -- 7.2.2.1 Spreading of a diffusant from a point source -- 7.2.2.2 Diffusion into a semi-infinite sample -- 7.2.3 Numerical solution -- 7.2.4 Diffusion forces and atomic mobility -- 7.2.5 Multicomponent diffusion -- 7.3 Activation energy for diffusion -- 7.3.1 Temperature dependence of the diffusion coefficient -- 7.3.2 Diffusion along dislocations and grain boundaries -- 7.4 Excess structural vacancies -- 7.4.1 Vacancy generation and annihilation -- 7.4.2 Modeling excess vacancy evolution -- 7.4.2.1 Annihilation at dislocation jogs -- 7.4.2.2 Annihilation at Frank loops -- 7.4.2.3 Annihilation at grain boundaries -- 7.4.3 Vacancy evolution in polycrystalline microstructure -- 7.5 Summary. | |
505 | 8 | |a 8. Design of simulation -- 8.1 General considerations -- 8.2 How to design and interpret a solid-state precipitation simulation. | |
505 | 8 | |a 9. Software for precipitation kinetics simulation -- 9.1 DICTRA, diffusion-controlled transformation -- 9.1.1 General information -- 9.1.2 Basic concepts -- 9.1.2.1 Sharp interface -- 9.1.2.2 Local equilibrium -- 9.1.2.3 Diffusion -- 9.1.2.4 Microstructure -- 9.1.2.5 Nucleation and surface energy -- 9.1.3 DICTRA precipitation simulation -- 9.1.3.1 Interactive formulation of a problem in DICTRA -- 9.1.3.2 Results of the simulation -- 9.1.4 Further modules -- 9.1.4.1 Para-equilibrium model -- 9.1.4.2 Pearlite module -- 9.2 PrecipiCalc--software for 3D multiphase precipitation evolution -- 9.2.1 General information -- 9.2.2 Software implementation -- 9.2.3 Example of precipicalc simulations -- 9.2.4 Summary -- 9.3 MatCalc, the materials calculator -- 9.3.1 General information -- 9.3.2 The kinetic model -- 9.3.3 MatCalc precipitation simulation in the GUI version -- 9.3.4 MatCalc precipitation simulation using scripting -- 9.3.5 Using MatCalc with external software -- 9.3.6 Software-relevant literature and web sources -- 9.3.6.1 Modeling -- 9.3.6.2 Application -- 9.3.6.3 Examples -- 9.4 PanPrecipitation, an integrated computational tool for precipitation simulation of multicomponent alloys -- 9.4.1 Introduction -- 9.4.2 Kinetic models -- 9.4.3 Software design and data structure -- 9.4.4 Examples -- 9.4.4.1 Example 1: precipitation behavior of a model Ni- 14 at% Al alloy -- 9.4.4.2 Example 2: coarsening of Rene88DT -- 9.4.4.3 Example 3: precipitation hardening behavior of Al-Mg-Si alloys -- 9.4.5 Discussion -- 9.5 TC-Prisma -- 9.5.1 General information -- 9.5.2 Kinetic model -- 9.5.3 Performing TC-Prisma simulations "from scratch" -- 9.5.3.1 Define system -- 9.5.3.2 Define simulation conditions -- 9.5.3.3 Start -- 9.5.3.4 Plot results -- 9.5.4 Performing simulations using scripts -- 9.6 Comparison of software codes. | |
505 | 8 | |a Appendix -- References -- Index. | |
520 | 3 | |a Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. | |
650 | 0 | |a Precipitation (Chemistry) |x Mathematical models. | |
650 | 6 | |a Précipitation (Chimie) |x Modèles mathématiques. | |
650 | 7 | |a SCIENCE |x Chemistry |x Physical & Theoretical. |2 bisacsh | |
650 | 7 | |a Precipitation (Chemistry) |x Mathematical models |2 fast | |
653 | |a precipitation modeling | ||
653 | |a precipitation of second phases | ||
653 | |a multi-component systems | ||
653 | |a complex thermo-mechanical treatments | ||
653 | |a phase transformation modeling | ||
653 | |a nucleation theory | ||
653 | |a precipitate growth | ||
653 | |a calculation of interfacial energies | ||
653 | |a numerical approaches using evolution equations | ||
653 | |a precipitation kinetics simulations | ||
758 | |i has work: |a Modeling solid-state precipitation (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGX449JQBDRRyqXhJHXwyb |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 1606500627 |z 9781606500620 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=520291 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34378807 | ||
938 | |a ebrary |b EBRY |n ebr10642432 | ||
938 | |a EBSCOhost |b EBSC |n 520291 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn823604565 |
---|---|
_version_ | 1816882218335731712 |
adam_text | |
any_adam_object | |
author | Kozeschnik, E. (Ernst) |
author_GND | http://id.loc.gov/authorities/names/nb2013014109 |
author_facet | Kozeschnik, E. (Ernst) |
author_role | |
author_sort | Kozeschnik, E. |
author_variant | e k ek |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QD547 |
callnumber-raw | QD547 .K695 2013 |
callnumber-search | QD547 .K695 2013 |
callnumber-sort | QD 3547 K695 42013 |
callnumber-subject | QD - Chemistry |
collection | ZDB-4-EBA |
contents | List of symbols -- List of figures -- List of tables -- Preface. 1. Thermodynamic basis of phase transformations -- 1.1 The Gibbs energy -- 1.2 Molar Gibbs energy and chemical potentials -- 1.3 Solution thermodynamics -- 1.3.1 Mechanical mixture and ideal solution -- 1.3.2 The regular solution -- 1.3.3 General solutions, the CALPHAD approach -- 1.4 Multiphase systems and driving force for precipitation -- 1.5 Curvature and elastic stress -- 1.5.1 The Gibbs-Thomson equation -- 1.5.2 Elastic misfit stress -- 1.6 Equilibrium structural vacancies. 2. Precipitate nucleation -- 2.1 Paving the way for nucleation theory -- 2.2 Nucleation of liquid droplets from supersaturated vapor -- 2.2.1 Thermodynamics of the critical nucleus -- 2.2.2 Overcoming the nucleation barrier -- 2.2.3 The kinetics of droplet formation -- 2.2.4 The Zeldovich factor -- 2.2.5 The time lag -- 2.2.6 Note on thermodynamic properties of small clusters -- 2.3 Solid-state nucleation -- 2.3.1 The precipitate-matrix interface -- 2.3.2 Free energy of nucleus formation -- 2.3.3 Steady-state nucleation rate in crystalline solids -- 2.3.4 Time-dependent nucleation -- 2.3.5 The volume misfit stress -- 2.3.6 Excess structural vacancies -- 2.4 Heterogeneous nucleation -- 2.4.1 Heterogeneous nucleation sites -- 2.4.2 Potential nucleation sites in a heterogeneous microstructure -- 2.4.3 Nucleation site saturation -- 2.4.4 Effective interfacial energies in heterogeneous nucleation -- 2.4.5 Grain boundary energy -- 2.5 Nucleation in multicomponent environment -- 2.5.1 CNT in multicomponent environment -- 2.5.2 The composition of the critical nucleus -- 2.6 Summary. 3. Diffusion-controlled precipitate growth and coarsening -- 3.1 Problem formulation -- 3.2 Diffusion-controlled growth with local thermodynamic equilibrium -- 3.2.1 Local equilibrium and composition profiles -- 3.2.2 Binary diffusion-controlled growth, the Zener model -- 3.2.3 The quasi-stationary solution for spherical precipitates -- 3.2.4 Analytical solution for high and low dimensionless supersaturation -- 3.2.5 Influence of capillarity on precipitate growth -- 3.3 Multicomponent diffusion-controlled growth -- 3.3.1 The multicomponent local equilibrium tie-lines -- 3.3.2 Fast and slow local equilibrium transformation regions -- 3.3.3 Local equilibrium controlled precipitation in multicomponent systems -- 3.3.4 Approximate treatment of multinary diffusional transformations -- 3.4 Energy dissipation at a moving phase boundary, the mixed-mode model -- 3.5 Mean-field evolution equations for precipitate growth -- 3.5.1 The thermodynamic extremal principle -- 3.5.2 Mean-field evolution equations for substitutional/interstital phases -- 3.5.3 Evolution equations for general sublattice phases -- 3.5.4 Comparison with local equilibrium based growth models -- 3.6 Precipitate coarsening -- 3.6.1 The lSW-theory of precipitate coarsening -- 3.6.2 Extensions of lSW theory for finite phase fraction effects -- 3.6.2.1 The modified lSW theory of Ardell -- 3.6.2.2 The Brailsford and Wynblatt theory -- 3.6.2.3 The Davies, Nash, and Stevens (LSEM) theory -- 3.6.2.4 The Tsumuraya and Miyata theory -- 3.6.2.5 The Marqusee and Ross theory -- 3.6.2.6 The Tokuyama and Kawasaki theory -- 3.6.2.7 The Voorhees and Glicksman theory -- 3.6.2.8 The Enomoto, Tokuyama, and Kawasaki theory -- 3.6.2.9 The Marder theory -- 3.6.3 Comparison of theories -- 3.6.4 Coarsening in multicomponent alloys -- 3.7 Summary. 4. Interfacial energy -- 4.1 The nearest-neighbor broken-bond model -- 4.2 Composition dependence of the precipitate-matrix interfacial energy -- 4.3 Generalization of the NNBB approach, the GBB model -- 4.3.1 Effective bond energies and broken bonds -- 4.3.2 Comparison between theory and experiment -- 4.4 Interface energy correction for small precipitates -- 4.4.1 The interface energy size correction function -- 4.4.2 Comparison with size correction in vapor-droplet systems -- 4.5 Energy of diffuse interfaces -- 4.5.1 Free energy of a diffuse interface -- 4.5.2 Regular solution approximation for diffuse interfaces -- 4.5.3 Comparison with other models -- 4.6 Summary. 5. Numerical modeling of precipitation -- 5.1 Kolmogorov-Johnson-Mehl-Avrami (KJMA) model -- 5.1.1 Derivation of the KJMA equation -- 5.1.2 Analysis of KJMA parameters -- 5.1.3 Multiphase KJMA kinetics -- 5.2 Langer-Schwartz model -- 5.2.1 The original LS model -- 5.2.2 Modified Langer-Schwartz model -- 5.3 Kampmann-Wagner numerical model -- 5.4 General course of a phase decomposition -- 5.4.1 Heat treatments for precipitation -- 5.4.2 Stages in precipitate life -- 5.4.3 Evolution of precipitation parameters -- 5.4.4 Overlap of nucleation, growth, and coarsening -- 5.5 Summary. 6. Heterogeneous precipitation -- 6.1 Precipitation at grain boundaries -- 6.1.1 Problem formulation -- 6.1.2 Diffusive processes -- 6.1.3 Evolution equations for precipitate growth -- 6.1.4 Evolution equations for precipitate coarsening -- 6.1.5 Growth kinetics of equisized precipitates -- 6.1.6 Growth kinetics of nonequisized precipitates -- 6.1.7 Coarsening kinetics -- 6.2 Anisotropy and precipitate shape -- 6.2.1 Shape parameter, h, and SFFK evolution equations -- 6.2.2 Determination of shape factors -- 6.2.3 Comparing growth kinetics -- 6.3 Particle coalescence -- 6.3.1 Diffusion kinetics of clusters -- 6.3.2 Evolution of precipitation systems by coalescence -- 6.3.3 Simultaneous adsorption/evaporation and coalescence -- 6.3.4 Phenomenological treatment of particle coalescence -- 6.3.5 Comparison with experiment -- 6.4 Simultaneous precipitation and diffusion -- 6.4.1 Numerical treatment in the local-equilibrium limit -- 6.4.2 Comparison of local-equilibrium simulations with experiment -- 6.4.3 Coupled diffusion and precipitation kinetics. 7. Diffusion -- 7.1 Mechanisms of diffusion -- 7.1.1 Diffusion in crystalline materials -- 7.1.2 The principle of microscopic time reversal -- 7.1.3 Random walk treatment of diffusion -- 7.1.4 The Einstein-Smoluchowski equation -- 7.2 Macroscopic models of diffusion -- 7.2.1 Phenomenological laws of diffusion -- 7.2.2 Special solutions of Fick's second law -- 7.2.2.1 Spreading of a diffusant from a point source -- 7.2.2.2 Diffusion into a semi-infinite sample -- 7.2.3 Numerical solution -- 7.2.4 Diffusion forces and atomic mobility -- 7.2.5 Multicomponent diffusion -- 7.3 Activation energy for diffusion -- 7.3.1 Temperature dependence of the diffusion coefficient -- 7.3.2 Diffusion along dislocations and grain boundaries -- 7.4 Excess structural vacancies -- 7.4.1 Vacancy generation and annihilation -- 7.4.2 Modeling excess vacancy evolution -- 7.4.2.1 Annihilation at dislocation jogs -- 7.4.2.2 Annihilation at Frank loops -- 7.4.2.3 Annihilation at grain boundaries -- 7.4.3 Vacancy evolution in polycrystalline microstructure -- 7.5 Summary. 8. Design of simulation -- 8.1 General considerations -- 8.2 How to design and interpret a solid-state precipitation simulation. 9. Software for precipitation kinetics simulation -- 9.1 DICTRA, diffusion-controlled transformation -- 9.1.1 General information -- 9.1.2 Basic concepts -- 9.1.2.1 Sharp interface -- 9.1.2.2 Local equilibrium -- 9.1.2.3 Diffusion -- 9.1.2.4 Microstructure -- 9.1.2.5 Nucleation and surface energy -- 9.1.3 DICTRA precipitation simulation -- 9.1.3.1 Interactive formulation of a problem in DICTRA -- 9.1.3.2 Results of the simulation -- 9.1.4 Further modules -- 9.1.4.1 Para-equilibrium model -- 9.1.4.2 Pearlite module -- 9.2 PrecipiCalc--software for 3D multiphase precipitation evolution -- 9.2.1 General information -- 9.2.2 Software implementation -- 9.2.3 Example of precipicalc simulations -- 9.2.4 Summary -- 9.3 MatCalc, the materials calculator -- 9.3.1 General information -- 9.3.2 The kinetic model -- 9.3.3 MatCalc precipitation simulation in the GUI version -- 9.3.4 MatCalc precipitation simulation using scripting -- 9.3.5 Using MatCalc with external software -- 9.3.6 Software-relevant literature and web sources -- 9.3.6.1 Modeling -- 9.3.6.2 Application -- 9.3.6.3 Examples -- 9.4 PanPrecipitation, an integrated computational tool for precipitation simulation of multicomponent alloys -- 9.4.1 Introduction -- 9.4.2 Kinetic models -- 9.4.3 Software design and data structure -- 9.4.4 Examples -- 9.4.4.1 Example 1: precipitation behavior of a model Ni- 14 at% Al alloy -- 9.4.4.2 Example 2: coarsening of Rene88DT -- 9.4.4.3 Example 3: precipitation hardening behavior of Al-Mg-Si alloys -- 9.4.5 Discussion -- 9.5 TC-Prisma -- 9.5.1 General information -- 9.5.2 Kinetic model -- 9.5.3 Performing TC-Prisma simulations "from scratch" -- 9.5.3.1 Define system -- 9.5.3.2 Define simulation conditions -- 9.5.3.3 Start -- 9.5.3.4 Plot results -- 9.5.4 Performing simulations using scripts -- 9.6 Comparison of software codes. Appendix -- References -- Index. |
ctrlnum | (OCoLC)823604565 |
dewey-full | 541.33 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.33 |
dewey-search | 541.33 |
dewey-sort | 3541.33 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12581cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn823604565</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr cn||||m|||a</controlfield><controlfield tag="008">130108s2013 nyua foab 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaBNvSL</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">J2I</subfield><subfield code="d">J2I</subfield><subfield code="d">N$T</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">E7B</subfield><subfield code="d">UKMGB</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TXI</subfield><subfield code="d">AGLDB</subfield><subfield code="d">CPO</subfield><subfield code="d">VGM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">VTS</subfield><subfield code="d">TKN</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016319126</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">825071235</subfield><subfield code="a">1087445101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606500644</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606500643</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781606500620</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1606500627</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5643/9781606500644</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)823604565</subfield><subfield code="z">(OCoLC)825071235</subfield><subfield code="z">(OCoLC)1087445101</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000186</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QD547</subfield><subfield code="b">.K695 2013</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">013050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">541.33</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kozeschnik, E.</subfield><subfield code="q">(Ernst)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjtC3gKt7H66XcvYCRjvjK</subfield><subfield code="0">http://id.loc.gov/authorities/names/nb2013014109</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling solid-state precipitation /</subfield><subfield code="c">Ernst Kozeschnik.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :</subfield><subfield code="b">Momentum Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (1 online resource (xxxiii, 464 pages)) :</subfield><subfield code="b">illustrations, digital file</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed on January 8, 2013).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 445-457) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">List of symbols -- List of figures -- List of tables -- Preface.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Thermodynamic basis of phase transformations -- 1.1 The Gibbs energy -- 1.2 Molar Gibbs energy and chemical potentials -- 1.3 Solution thermodynamics -- 1.3.1 Mechanical mixture and ideal solution -- 1.3.2 The regular solution -- 1.3.3 General solutions, the CALPHAD approach -- 1.4 Multiphase systems and driving force for precipitation -- 1.5 Curvature and elastic stress -- 1.5.1 The Gibbs-Thomson equation -- 1.5.2 Elastic misfit stress -- 1.6 Equilibrium structural vacancies.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Precipitate nucleation -- 2.1 Paving the way for nucleation theory -- 2.2 Nucleation of liquid droplets from supersaturated vapor -- 2.2.1 Thermodynamics of the critical nucleus -- 2.2.2 Overcoming the nucleation barrier -- 2.2.3 The kinetics of droplet formation -- 2.2.4 The Zeldovich factor -- 2.2.5 The time lag -- 2.2.6 Note on thermodynamic properties of small clusters -- 2.3 Solid-state nucleation -- 2.3.1 The precipitate-matrix interface -- 2.3.2 Free energy of nucleus formation -- 2.3.3 Steady-state nucleation rate in crystalline solids -- 2.3.4 Time-dependent nucleation -- 2.3.5 The volume misfit stress -- 2.3.6 Excess structural vacancies -- 2.4 Heterogeneous nucleation -- 2.4.1 Heterogeneous nucleation sites -- 2.4.2 Potential nucleation sites in a heterogeneous microstructure -- 2.4.3 Nucleation site saturation -- 2.4.4 Effective interfacial energies in heterogeneous nucleation -- 2.4.5 Grain boundary energy -- 2.5 Nucleation in multicomponent environment -- 2.5.1 CNT in multicomponent environment -- 2.5.2 The composition of the critical nucleus -- 2.6 Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Diffusion-controlled precipitate growth and coarsening -- 3.1 Problem formulation -- 3.2 Diffusion-controlled growth with local thermodynamic equilibrium -- 3.2.1 Local equilibrium and composition profiles -- 3.2.2 Binary diffusion-controlled growth, the Zener model -- 3.2.3 The quasi-stationary solution for spherical precipitates -- 3.2.4 Analytical solution for high and low dimensionless supersaturation -- 3.2.5 Influence of capillarity on precipitate growth -- 3.3 Multicomponent diffusion-controlled growth -- 3.3.1 The multicomponent local equilibrium tie-lines -- 3.3.2 Fast and slow local equilibrium transformation regions -- 3.3.3 Local equilibrium controlled precipitation in multicomponent systems -- 3.3.4 Approximate treatment of multinary diffusional transformations -- 3.4 Energy dissipation at a moving phase boundary, the mixed-mode model -- 3.5 Mean-field evolution equations for precipitate growth -- 3.5.1 The thermodynamic extremal principle -- 3.5.2 Mean-field evolution equations for substitutional/interstital phases -- 3.5.3 Evolution equations for general sublattice phases -- 3.5.4 Comparison with local equilibrium based growth models -- 3.6 Precipitate coarsening -- 3.6.1 The lSW-theory of precipitate coarsening -- 3.6.2 Extensions of lSW theory for finite phase fraction effects -- 3.6.2.1 The modified lSW theory of Ardell -- 3.6.2.2 The Brailsford and Wynblatt theory -- 3.6.2.3 The Davies, Nash, and Stevens (LSEM) theory -- 3.6.2.4 The Tsumuraya and Miyata theory -- 3.6.2.5 The Marqusee and Ross theory -- 3.6.2.6 The Tokuyama and Kawasaki theory -- 3.6.2.7 The Voorhees and Glicksman theory -- 3.6.2.8 The Enomoto, Tokuyama, and Kawasaki theory -- 3.6.2.9 The Marder theory -- 3.6.3 Comparison of theories -- 3.6.4 Coarsening in multicomponent alloys -- 3.7 Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Interfacial energy -- 4.1 The nearest-neighbor broken-bond model -- 4.2 Composition dependence of the precipitate-matrix interfacial energy -- 4.3 Generalization of the NNBB approach, the GBB model -- 4.3.1 Effective bond energies and broken bonds -- 4.3.2 Comparison between theory and experiment -- 4.4 Interface energy correction for small precipitates -- 4.4.1 The interface energy size correction function -- 4.4.2 Comparison with size correction in vapor-droplet systems -- 4.5 Energy of diffuse interfaces -- 4.5.1 Free energy of a diffuse interface -- 4.5.2 Regular solution approximation for diffuse interfaces -- 4.5.3 Comparison with other models -- 4.6 Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Numerical modeling of precipitation -- 5.1 Kolmogorov-Johnson-Mehl-Avrami (KJMA) model -- 5.1.1 Derivation of the KJMA equation -- 5.1.2 Analysis of KJMA parameters -- 5.1.3 Multiphase KJMA kinetics -- 5.2 Langer-Schwartz model -- 5.2.1 The original LS model -- 5.2.2 Modified Langer-Schwartz model -- 5.3 Kampmann-Wagner numerical model -- 5.4 General course of a phase decomposition -- 5.4.1 Heat treatments for precipitation -- 5.4.2 Stages in precipitate life -- 5.4.3 Evolution of precipitation parameters -- 5.4.4 Overlap of nucleation, growth, and coarsening -- 5.5 Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Heterogeneous precipitation -- 6.1 Precipitation at grain boundaries -- 6.1.1 Problem formulation -- 6.1.2 Diffusive processes -- 6.1.3 Evolution equations for precipitate growth -- 6.1.4 Evolution equations for precipitate coarsening -- 6.1.5 Growth kinetics of equisized precipitates -- 6.1.6 Growth kinetics of nonequisized precipitates -- 6.1.7 Coarsening kinetics -- 6.2 Anisotropy and precipitate shape -- 6.2.1 Shape parameter, h, and SFFK evolution equations -- 6.2.2 Determination of shape factors -- 6.2.3 Comparing growth kinetics -- 6.3 Particle coalescence -- 6.3.1 Diffusion kinetics of clusters -- 6.3.2 Evolution of precipitation systems by coalescence -- 6.3.3 Simultaneous adsorption/evaporation and coalescence -- 6.3.4 Phenomenological treatment of particle coalescence -- 6.3.5 Comparison with experiment -- 6.4 Simultaneous precipitation and diffusion -- 6.4.1 Numerical treatment in the local-equilibrium limit -- 6.4.2 Comparison of local-equilibrium simulations with experiment -- 6.4.3 Coupled diffusion and precipitation kinetics.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Diffusion -- 7.1 Mechanisms of diffusion -- 7.1.1 Diffusion in crystalline materials -- 7.1.2 The principle of microscopic time reversal -- 7.1.3 Random walk treatment of diffusion -- 7.1.4 The Einstein-Smoluchowski equation -- 7.2 Macroscopic models of diffusion -- 7.2.1 Phenomenological laws of diffusion -- 7.2.2 Special solutions of Fick's second law -- 7.2.2.1 Spreading of a diffusant from a point source -- 7.2.2.2 Diffusion into a semi-infinite sample -- 7.2.3 Numerical solution -- 7.2.4 Diffusion forces and atomic mobility -- 7.2.5 Multicomponent diffusion -- 7.3 Activation energy for diffusion -- 7.3.1 Temperature dependence of the diffusion coefficient -- 7.3.2 Diffusion along dislocations and grain boundaries -- 7.4 Excess structural vacancies -- 7.4.1 Vacancy generation and annihilation -- 7.4.2 Modeling excess vacancy evolution -- 7.4.2.1 Annihilation at dislocation jogs -- 7.4.2.2 Annihilation at Frank loops -- 7.4.2.3 Annihilation at grain boundaries -- 7.4.3 Vacancy evolution in polycrystalline microstructure -- 7.5 Summary.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Design of simulation -- 8.1 General considerations -- 8.2 How to design and interpret a solid-state precipitation simulation.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Software for precipitation kinetics simulation -- 9.1 DICTRA, diffusion-controlled transformation -- 9.1.1 General information -- 9.1.2 Basic concepts -- 9.1.2.1 Sharp interface -- 9.1.2.2 Local equilibrium -- 9.1.2.3 Diffusion -- 9.1.2.4 Microstructure -- 9.1.2.5 Nucleation and surface energy -- 9.1.3 DICTRA precipitation simulation -- 9.1.3.1 Interactive formulation of a problem in DICTRA -- 9.1.3.2 Results of the simulation -- 9.1.4 Further modules -- 9.1.4.1 Para-equilibrium model -- 9.1.4.2 Pearlite module -- 9.2 PrecipiCalc--software for 3D multiphase precipitation evolution -- 9.2.1 General information -- 9.2.2 Software implementation -- 9.2.3 Example of precipicalc simulations -- 9.2.4 Summary -- 9.3 MatCalc, the materials calculator -- 9.3.1 General information -- 9.3.2 The kinetic model -- 9.3.3 MatCalc precipitation simulation in the GUI version -- 9.3.4 MatCalc precipitation simulation using scripting -- 9.3.5 Using MatCalc with external software -- 9.3.6 Software-relevant literature and web sources -- 9.3.6.1 Modeling -- 9.3.6.2 Application -- 9.3.6.3 Examples -- 9.4 PanPrecipitation, an integrated computational tool for precipitation simulation of multicomponent alloys -- 9.4.1 Introduction -- 9.4.2 Kinetic models -- 9.4.3 Software design and data structure -- 9.4.4 Examples -- 9.4.4.1 Example 1: precipitation behavior of a model Ni- 14 at% Al alloy -- 9.4.4.2 Example 2: coarsening of Rene88DT -- 9.4.4.3 Example 3: precipitation hardening behavior of Al-Mg-Si alloys -- 9.4.5 Discussion -- 9.5 TC-Prisma -- 9.5.1 General information -- 9.5.2 Kinetic model -- 9.5.3 Performing TC-Prisma simulations "from scratch" -- 9.5.3.1 Define system -- 9.5.3.2 Define simulation conditions -- 9.5.3.3 Start -- 9.5.3.4 Plot results -- 9.5.4 Performing simulations using scripts -- 9.6 Comparison of software codes.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Appendix -- References -- Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Precipitation (Chemistry)</subfield><subfield code="x">Mathematical models.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Précipitation (Chimie)</subfield><subfield code="x">Modèles mathématiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE</subfield><subfield code="x">Chemistry</subfield><subfield code="x">Physical & Theoretical.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Precipitation (Chemistry)</subfield><subfield code="x">Mathematical models</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">precipitation modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">precipitation of second phases</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multi-component systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">complex thermo-mechanical treatments</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">phase transformation modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nucleation theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">precipitate growth</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">calculation of interfacial energies</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">numerical approaches using evolution equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">precipitation kinetics simulations</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Modeling solid-state precipitation (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGX449JQBDRRyqXhJHXwyb</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">1606500627</subfield><subfield code="z">9781606500620</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=520291</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34378807</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10642432</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">520291</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn823604565 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:07Z |
institution | BVB |
isbn | 9781606500644 1606500643 |
language | English |
oclc_num | 823604565 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (1 online resource (xxxiii, 464 pages)) : illustrations, digital file |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Momentum Press, |
record_format | marc |
spelling | Kozeschnik, E. (Ernst) https://id.oclc.org/worldcat/entity/E39PCjtC3gKt7H66XcvYCRjvjK http://id.loc.gov/authorities/names/nb2013014109 Modeling solid-state precipitation / Ernst Kozeschnik. [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2013. 1 online resource (1 online resource (xxxiii, 464 pages)) : illustrations, digital file text txt rdacontent computer c rdamedia online resource cr rdacarrier Title from PDF title page (viewed on January 8, 2013). Includes bibliographical references (pages 445-457) and index. List of symbols -- List of figures -- List of tables -- Preface. 1. Thermodynamic basis of phase transformations -- 1.1 The Gibbs energy -- 1.2 Molar Gibbs energy and chemical potentials -- 1.3 Solution thermodynamics -- 1.3.1 Mechanical mixture and ideal solution -- 1.3.2 The regular solution -- 1.3.3 General solutions, the CALPHAD approach -- 1.4 Multiphase systems and driving force for precipitation -- 1.5 Curvature and elastic stress -- 1.5.1 The Gibbs-Thomson equation -- 1.5.2 Elastic misfit stress -- 1.6 Equilibrium structural vacancies. 2. Precipitate nucleation -- 2.1 Paving the way for nucleation theory -- 2.2 Nucleation of liquid droplets from supersaturated vapor -- 2.2.1 Thermodynamics of the critical nucleus -- 2.2.2 Overcoming the nucleation barrier -- 2.2.3 The kinetics of droplet formation -- 2.2.4 The Zeldovich factor -- 2.2.5 The time lag -- 2.2.6 Note on thermodynamic properties of small clusters -- 2.3 Solid-state nucleation -- 2.3.1 The precipitate-matrix interface -- 2.3.2 Free energy of nucleus formation -- 2.3.3 Steady-state nucleation rate in crystalline solids -- 2.3.4 Time-dependent nucleation -- 2.3.5 The volume misfit stress -- 2.3.6 Excess structural vacancies -- 2.4 Heterogeneous nucleation -- 2.4.1 Heterogeneous nucleation sites -- 2.4.2 Potential nucleation sites in a heterogeneous microstructure -- 2.4.3 Nucleation site saturation -- 2.4.4 Effective interfacial energies in heterogeneous nucleation -- 2.4.5 Grain boundary energy -- 2.5 Nucleation in multicomponent environment -- 2.5.1 CNT in multicomponent environment -- 2.5.2 The composition of the critical nucleus -- 2.6 Summary. 3. Diffusion-controlled precipitate growth and coarsening -- 3.1 Problem formulation -- 3.2 Diffusion-controlled growth with local thermodynamic equilibrium -- 3.2.1 Local equilibrium and composition profiles -- 3.2.2 Binary diffusion-controlled growth, the Zener model -- 3.2.3 The quasi-stationary solution for spherical precipitates -- 3.2.4 Analytical solution for high and low dimensionless supersaturation -- 3.2.5 Influence of capillarity on precipitate growth -- 3.3 Multicomponent diffusion-controlled growth -- 3.3.1 The multicomponent local equilibrium tie-lines -- 3.3.2 Fast and slow local equilibrium transformation regions -- 3.3.3 Local equilibrium controlled precipitation in multicomponent systems -- 3.3.4 Approximate treatment of multinary diffusional transformations -- 3.4 Energy dissipation at a moving phase boundary, the mixed-mode model -- 3.5 Mean-field evolution equations for precipitate growth -- 3.5.1 The thermodynamic extremal principle -- 3.5.2 Mean-field evolution equations for substitutional/interstital phases -- 3.5.3 Evolution equations for general sublattice phases -- 3.5.4 Comparison with local equilibrium based growth models -- 3.6 Precipitate coarsening -- 3.6.1 The lSW-theory of precipitate coarsening -- 3.6.2 Extensions of lSW theory for finite phase fraction effects -- 3.6.2.1 The modified lSW theory of Ardell -- 3.6.2.2 The Brailsford and Wynblatt theory -- 3.6.2.3 The Davies, Nash, and Stevens (LSEM) theory -- 3.6.2.4 The Tsumuraya and Miyata theory -- 3.6.2.5 The Marqusee and Ross theory -- 3.6.2.6 The Tokuyama and Kawasaki theory -- 3.6.2.7 The Voorhees and Glicksman theory -- 3.6.2.8 The Enomoto, Tokuyama, and Kawasaki theory -- 3.6.2.9 The Marder theory -- 3.6.3 Comparison of theories -- 3.6.4 Coarsening in multicomponent alloys -- 3.7 Summary. 4. Interfacial energy -- 4.1 The nearest-neighbor broken-bond model -- 4.2 Composition dependence of the precipitate-matrix interfacial energy -- 4.3 Generalization of the NNBB approach, the GBB model -- 4.3.1 Effective bond energies and broken bonds -- 4.3.2 Comparison between theory and experiment -- 4.4 Interface energy correction for small precipitates -- 4.4.1 The interface energy size correction function -- 4.4.2 Comparison with size correction in vapor-droplet systems -- 4.5 Energy of diffuse interfaces -- 4.5.1 Free energy of a diffuse interface -- 4.5.2 Regular solution approximation for diffuse interfaces -- 4.5.3 Comparison with other models -- 4.6 Summary. 5. Numerical modeling of precipitation -- 5.1 Kolmogorov-Johnson-Mehl-Avrami (KJMA) model -- 5.1.1 Derivation of the KJMA equation -- 5.1.2 Analysis of KJMA parameters -- 5.1.3 Multiphase KJMA kinetics -- 5.2 Langer-Schwartz model -- 5.2.1 The original LS model -- 5.2.2 Modified Langer-Schwartz model -- 5.3 Kampmann-Wagner numerical model -- 5.4 General course of a phase decomposition -- 5.4.1 Heat treatments for precipitation -- 5.4.2 Stages in precipitate life -- 5.4.3 Evolution of precipitation parameters -- 5.4.4 Overlap of nucleation, growth, and coarsening -- 5.5 Summary. 6. Heterogeneous precipitation -- 6.1 Precipitation at grain boundaries -- 6.1.1 Problem formulation -- 6.1.2 Diffusive processes -- 6.1.3 Evolution equations for precipitate growth -- 6.1.4 Evolution equations for precipitate coarsening -- 6.1.5 Growth kinetics of equisized precipitates -- 6.1.6 Growth kinetics of nonequisized precipitates -- 6.1.7 Coarsening kinetics -- 6.2 Anisotropy and precipitate shape -- 6.2.1 Shape parameter, h, and SFFK evolution equations -- 6.2.2 Determination of shape factors -- 6.2.3 Comparing growth kinetics -- 6.3 Particle coalescence -- 6.3.1 Diffusion kinetics of clusters -- 6.3.2 Evolution of precipitation systems by coalescence -- 6.3.3 Simultaneous adsorption/evaporation and coalescence -- 6.3.4 Phenomenological treatment of particle coalescence -- 6.3.5 Comparison with experiment -- 6.4 Simultaneous precipitation and diffusion -- 6.4.1 Numerical treatment in the local-equilibrium limit -- 6.4.2 Comparison of local-equilibrium simulations with experiment -- 6.4.3 Coupled diffusion and precipitation kinetics. 7. Diffusion -- 7.1 Mechanisms of diffusion -- 7.1.1 Diffusion in crystalline materials -- 7.1.2 The principle of microscopic time reversal -- 7.1.3 Random walk treatment of diffusion -- 7.1.4 The Einstein-Smoluchowski equation -- 7.2 Macroscopic models of diffusion -- 7.2.1 Phenomenological laws of diffusion -- 7.2.2 Special solutions of Fick's second law -- 7.2.2.1 Spreading of a diffusant from a point source -- 7.2.2.2 Diffusion into a semi-infinite sample -- 7.2.3 Numerical solution -- 7.2.4 Diffusion forces and atomic mobility -- 7.2.5 Multicomponent diffusion -- 7.3 Activation energy for diffusion -- 7.3.1 Temperature dependence of the diffusion coefficient -- 7.3.2 Diffusion along dislocations and grain boundaries -- 7.4 Excess structural vacancies -- 7.4.1 Vacancy generation and annihilation -- 7.4.2 Modeling excess vacancy evolution -- 7.4.2.1 Annihilation at dislocation jogs -- 7.4.2.2 Annihilation at Frank loops -- 7.4.2.3 Annihilation at grain boundaries -- 7.4.3 Vacancy evolution in polycrystalline microstructure -- 7.5 Summary. 8. Design of simulation -- 8.1 General considerations -- 8.2 How to design and interpret a solid-state precipitation simulation. 9. Software for precipitation kinetics simulation -- 9.1 DICTRA, diffusion-controlled transformation -- 9.1.1 General information -- 9.1.2 Basic concepts -- 9.1.2.1 Sharp interface -- 9.1.2.2 Local equilibrium -- 9.1.2.3 Diffusion -- 9.1.2.4 Microstructure -- 9.1.2.5 Nucleation and surface energy -- 9.1.3 DICTRA precipitation simulation -- 9.1.3.1 Interactive formulation of a problem in DICTRA -- 9.1.3.2 Results of the simulation -- 9.1.4 Further modules -- 9.1.4.1 Para-equilibrium model -- 9.1.4.2 Pearlite module -- 9.2 PrecipiCalc--software for 3D multiphase precipitation evolution -- 9.2.1 General information -- 9.2.2 Software implementation -- 9.2.3 Example of precipicalc simulations -- 9.2.4 Summary -- 9.3 MatCalc, the materials calculator -- 9.3.1 General information -- 9.3.2 The kinetic model -- 9.3.3 MatCalc precipitation simulation in the GUI version -- 9.3.4 MatCalc precipitation simulation using scripting -- 9.3.5 Using MatCalc with external software -- 9.3.6 Software-relevant literature and web sources -- 9.3.6.1 Modeling -- 9.3.6.2 Application -- 9.3.6.3 Examples -- 9.4 PanPrecipitation, an integrated computational tool for precipitation simulation of multicomponent alloys -- 9.4.1 Introduction -- 9.4.2 Kinetic models -- 9.4.3 Software design and data structure -- 9.4.4 Examples -- 9.4.4.1 Example 1: precipitation behavior of a model Ni- 14 at% Al alloy -- 9.4.4.2 Example 2: coarsening of Rene88DT -- 9.4.4.3 Example 3: precipitation hardening behavior of Al-Mg-Si alloys -- 9.4.5 Discussion -- 9.5 TC-Prisma -- 9.5.1 General information -- 9.5.2 Kinetic model -- 9.5.3 Performing TC-Prisma simulations "from scratch" -- 9.5.3.1 Define system -- 9.5.3.2 Define simulation conditions -- 9.5.3.3 Start -- 9.5.3.4 Plot results -- 9.5.4 Performing simulations using scripts -- 9.6 Comparison of software codes. Appendix -- References -- Index. Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. Precipitation (Chemistry) Mathematical models. Précipitation (Chimie) Modèles mathématiques. SCIENCE Chemistry Physical & Theoretical. bisacsh Precipitation (Chemistry) Mathematical models fast precipitation modeling precipitation of second phases multi-component systems complex thermo-mechanical treatments phase transformation modeling nucleation theory precipitate growth calculation of interfacial energies numerical approaches using evolution equations precipitation kinetics simulations has work: Modeling solid-state precipitation (Text) https://id.oclc.org/worldcat/entity/E39PCGX449JQBDRRyqXhJHXwyb https://id.oclc.org/worldcat/ontology/hasWork Print version: 1606500627 9781606500620 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=520291 Volltext |
spellingShingle | Kozeschnik, E. (Ernst) Modeling solid-state precipitation / List of symbols -- List of figures -- List of tables -- Preface. 1. Thermodynamic basis of phase transformations -- 1.1 The Gibbs energy -- 1.2 Molar Gibbs energy and chemical potentials -- 1.3 Solution thermodynamics -- 1.3.1 Mechanical mixture and ideal solution -- 1.3.2 The regular solution -- 1.3.3 General solutions, the CALPHAD approach -- 1.4 Multiphase systems and driving force for precipitation -- 1.5 Curvature and elastic stress -- 1.5.1 The Gibbs-Thomson equation -- 1.5.2 Elastic misfit stress -- 1.6 Equilibrium structural vacancies. 2. Precipitate nucleation -- 2.1 Paving the way for nucleation theory -- 2.2 Nucleation of liquid droplets from supersaturated vapor -- 2.2.1 Thermodynamics of the critical nucleus -- 2.2.2 Overcoming the nucleation barrier -- 2.2.3 The kinetics of droplet formation -- 2.2.4 The Zeldovich factor -- 2.2.5 The time lag -- 2.2.6 Note on thermodynamic properties of small clusters -- 2.3 Solid-state nucleation -- 2.3.1 The precipitate-matrix interface -- 2.3.2 Free energy of nucleus formation -- 2.3.3 Steady-state nucleation rate in crystalline solids -- 2.3.4 Time-dependent nucleation -- 2.3.5 The volume misfit stress -- 2.3.6 Excess structural vacancies -- 2.4 Heterogeneous nucleation -- 2.4.1 Heterogeneous nucleation sites -- 2.4.2 Potential nucleation sites in a heterogeneous microstructure -- 2.4.3 Nucleation site saturation -- 2.4.4 Effective interfacial energies in heterogeneous nucleation -- 2.4.5 Grain boundary energy -- 2.5 Nucleation in multicomponent environment -- 2.5.1 CNT in multicomponent environment -- 2.5.2 The composition of the critical nucleus -- 2.6 Summary. 3. Diffusion-controlled precipitate growth and coarsening -- 3.1 Problem formulation -- 3.2 Diffusion-controlled growth with local thermodynamic equilibrium -- 3.2.1 Local equilibrium and composition profiles -- 3.2.2 Binary diffusion-controlled growth, the Zener model -- 3.2.3 The quasi-stationary solution for spherical precipitates -- 3.2.4 Analytical solution for high and low dimensionless supersaturation -- 3.2.5 Influence of capillarity on precipitate growth -- 3.3 Multicomponent diffusion-controlled growth -- 3.3.1 The multicomponent local equilibrium tie-lines -- 3.3.2 Fast and slow local equilibrium transformation regions -- 3.3.3 Local equilibrium controlled precipitation in multicomponent systems -- 3.3.4 Approximate treatment of multinary diffusional transformations -- 3.4 Energy dissipation at a moving phase boundary, the mixed-mode model -- 3.5 Mean-field evolution equations for precipitate growth -- 3.5.1 The thermodynamic extremal principle -- 3.5.2 Mean-field evolution equations for substitutional/interstital phases -- 3.5.3 Evolution equations for general sublattice phases -- 3.5.4 Comparison with local equilibrium based growth models -- 3.6 Precipitate coarsening -- 3.6.1 The lSW-theory of precipitate coarsening -- 3.6.2 Extensions of lSW theory for finite phase fraction effects -- 3.6.2.1 The modified lSW theory of Ardell -- 3.6.2.2 The Brailsford and Wynblatt theory -- 3.6.2.3 The Davies, Nash, and Stevens (LSEM) theory -- 3.6.2.4 The Tsumuraya and Miyata theory -- 3.6.2.5 The Marqusee and Ross theory -- 3.6.2.6 The Tokuyama and Kawasaki theory -- 3.6.2.7 The Voorhees and Glicksman theory -- 3.6.2.8 The Enomoto, Tokuyama, and Kawasaki theory -- 3.6.2.9 The Marder theory -- 3.6.3 Comparison of theories -- 3.6.4 Coarsening in multicomponent alloys -- 3.7 Summary. 4. Interfacial energy -- 4.1 The nearest-neighbor broken-bond model -- 4.2 Composition dependence of the precipitate-matrix interfacial energy -- 4.3 Generalization of the NNBB approach, the GBB model -- 4.3.1 Effective bond energies and broken bonds -- 4.3.2 Comparison between theory and experiment -- 4.4 Interface energy correction for small precipitates -- 4.4.1 The interface energy size correction function -- 4.4.2 Comparison with size correction in vapor-droplet systems -- 4.5 Energy of diffuse interfaces -- 4.5.1 Free energy of a diffuse interface -- 4.5.2 Regular solution approximation for diffuse interfaces -- 4.5.3 Comparison with other models -- 4.6 Summary. 5. Numerical modeling of precipitation -- 5.1 Kolmogorov-Johnson-Mehl-Avrami (KJMA) model -- 5.1.1 Derivation of the KJMA equation -- 5.1.2 Analysis of KJMA parameters -- 5.1.3 Multiphase KJMA kinetics -- 5.2 Langer-Schwartz model -- 5.2.1 The original LS model -- 5.2.2 Modified Langer-Schwartz model -- 5.3 Kampmann-Wagner numerical model -- 5.4 General course of a phase decomposition -- 5.4.1 Heat treatments for precipitation -- 5.4.2 Stages in precipitate life -- 5.4.3 Evolution of precipitation parameters -- 5.4.4 Overlap of nucleation, growth, and coarsening -- 5.5 Summary. 6. Heterogeneous precipitation -- 6.1 Precipitation at grain boundaries -- 6.1.1 Problem formulation -- 6.1.2 Diffusive processes -- 6.1.3 Evolution equations for precipitate growth -- 6.1.4 Evolution equations for precipitate coarsening -- 6.1.5 Growth kinetics of equisized precipitates -- 6.1.6 Growth kinetics of nonequisized precipitates -- 6.1.7 Coarsening kinetics -- 6.2 Anisotropy and precipitate shape -- 6.2.1 Shape parameter, h, and SFFK evolution equations -- 6.2.2 Determination of shape factors -- 6.2.3 Comparing growth kinetics -- 6.3 Particle coalescence -- 6.3.1 Diffusion kinetics of clusters -- 6.3.2 Evolution of precipitation systems by coalescence -- 6.3.3 Simultaneous adsorption/evaporation and coalescence -- 6.3.4 Phenomenological treatment of particle coalescence -- 6.3.5 Comparison with experiment -- 6.4 Simultaneous precipitation and diffusion -- 6.4.1 Numerical treatment in the local-equilibrium limit -- 6.4.2 Comparison of local-equilibrium simulations with experiment -- 6.4.3 Coupled diffusion and precipitation kinetics. 7. Diffusion -- 7.1 Mechanisms of diffusion -- 7.1.1 Diffusion in crystalline materials -- 7.1.2 The principle of microscopic time reversal -- 7.1.3 Random walk treatment of diffusion -- 7.1.4 The Einstein-Smoluchowski equation -- 7.2 Macroscopic models of diffusion -- 7.2.1 Phenomenological laws of diffusion -- 7.2.2 Special solutions of Fick's second law -- 7.2.2.1 Spreading of a diffusant from a point source -- 7.2.2.2 Diffusion into a semi-infinite sample -- 7.2.3 Numerical solution -- 7.2.4 Diffusion forces and atomic mobility -- 7.2.5 Multicomponent diffusion -- 7.3 Activation energy for diffusion -- 7.3.1 Temperature dependence of the diffusion coefficient -- 7.3.2 Diffusion along dislocations and grain boundaries -- 7.4 Excess structural vacancies -- 7.4.1 Vacancy generation and annihilation -- 7.4.2 Modeling excess vacancy evolution -- 7.4.2.1 Annihilation at dislocation jogs -- 7.4.2.2 Annihilation at Frank loops -- 7.4.2.3 Annihilation at grain boundaries -- 7.4.3 Vacancy evolution in polycrystalline microstructure -- 7.5 Summary. 8. Design of simulation -- 8.1 General considerations -- 8.2 How to design and interpret a solid-state precipitation simulation. 9. Software for precipitation kinetics simulation -- 9.1 DICTRA, diffusion-controlled transformation -- 9.1.1 General information -- 9.1.2 Basic concepts -- 9.1.2.1 Sharp interface -- 9.1.2.2 Local equilibrium -- 9.1.2.3 Diffusion -- 9.1.2.4 Microstructure -- 9.1.2.5 Nucleation and surface energy -- 9.1.3 DICTRA precipitation simulation -- 9.1.3.1 Interactive formulation of a problem in DICTRA -- 9.1.3.2 Results of the simulation -- 9.1.4 Further modules -- 9.1.4.1 Para-equilibrium model -- 9.1.4.2 Pearlite module -- 9.2 PrecipiCalc--software for 3D multiphase precipitation evolution -- 9.2.1 General information -- 9.2.2 Software implementation -- 9.2.3 Example of precipicalc simulations -- 9.2.4 Summary -- 9.3 MatCalc, the materials calculator -- 9.3.1 General information -- 9.3.2 The kinetic model -- 9.3.3 MatCalc precipitation simulation in the GUI version -- 9.3.4 MatCalc precipitation simulation using scripting -- 9.3.5 Using MatCalc with external software -- 9.3.6 Software-relevant literature and web sources -- 9.3.6.1 Modeling -- 9.3.6.2 Application -- 9.3.6.3 Examples -- 9.4 PanPrecipitation, an integrated computational tool for precipitation simulation of multicomponent alloys -- 9.4.1 Introduction -- 9.4.2 Kinetic models -- 9.4.3 Software design and data structure -- 9.4.4 Examples -- 9.4.4.1 Example 1: precipitation behavior of a model Ni- 14 at% Al alloy -- 9.4.4.2 Example 2: coarsening of Rene88DT -- 9.4.4.3 Example 3: precipitation hardening behavior of Al-Mg-Si alloys -- 9.4.5 Discussion -- 9.5 TC-Prisma -- 9.5.1 General information -- 9.5.2 Kinetic model -- 9.5.3 Performing TC-Prisma simulations "from scratch" -- 9.5.3.1 Define system -- 9.5.3.2 Define simulation conditions -- 9.5.3.3 Start -- 9.5.3.4 Plot results -- 9.5.4 Performing simulations using scripts -- 9.6 Comparison of software codes. Appendix -- References -- Index. Precipitation (Chemistry) Mathematical models. Précipitation (Chimie) Modèles mathématiques. SCIENCE Chemistry Physical & Theoretical. bisacsh Precipitation (Chemistry) Mathematical models fast |
title | Modeling solid-state precipitation / |
title_auth | Modeling solid-state precipitation / |
title_exact_search | Modeling solid-state precipitation / |
title_full | Modeling solid-state precipitation / Ernst Kozeschnik. |
title_fullStr | Modeling solid-state precipitation / Ernst Kozeschnik. |
title_full_unstemmed | Modeling solid-state precipitation / Ernst Kozeschnik. |
title_short | Modeling solid-state precipitation / |
title_sort | modeling solid state precipitation |
topic | Precipitation (Chemistry) Mathematical models. Précipitation (Chimie) Modèles mathématiques. SCIENCE Chemistry Physical & Theoretical. bisacsh Precipitation (Chemistry) Mathematical models fast |
topic_facet | Precipitation (Chemistry) Mathematical models. Précipitation (Chimie) Modèles mathématiques. SCIENCE Chemistry Physical & Theoretical. Precipitation (Chemistry) Mathematical models |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=520291 |
work_keys_str_mv | AT kozeschnike modelingsolidstateprecipitation |