The geometry and topology of coxeter groups /:
"The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidea...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Princeton :
Princeton University Press,
©2008.
|
Schriftenreihe: | London Mathematical Society monographs ;
new ser., no. 32. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--Jacket |
Beschreibung: | Series numbering from spine. |
Beschreibung: | 1 online resource (xiv, 584 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 555-572) and index. |
ISBN: | 9781400845941 1400845947 1283851288 9781283851282 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn823170151 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 130102s2008 njua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d OCLCE |d E7B |d OCLCA |d IDEBK |d OCLCA |d JSTOR |d OCLCF |d OCLCQ |d YDXCP |d OCLCQ |d CHVBK |d OCLCQ |d AZK |d COCUF |d AGLDB |d MOR |d CCO |d OCLCO |d PIFAG |d OTZ |d OCLCQ |d IOG |d U3W |d EZ9 |d UUM |d STF |d WRM |d VTS |d NRAMU |d INT |d REC |d VT2 |d OCLCO |d AU@ |d OCLCQ |d WYU |d LVT |d OCLCQ |d M8D |d UKAHL |d HS0 |d UKCRE |d VLY |d MM9 |d OCLCQ |d OCLCO |d LUU |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBA768809 |2 bnb | ||
016 | 7 | |a 013829036 |2 Uk | |
019 | |a 652274206 |a 945911924 |a 961604097 |a 962592164 |a 988450667 |a 991961271 |a 994998387 |a 1037712810 |a 1038682680 |a 1045493533 |a 1055337770 |a 1058139922 |a 1065157518 |a 1153452799 |a 1162006403 |a 1181901229 |a 1228547409 | ||
020 | |a 9781400845941 |q (electronic bk.) | ||
020 | |a 1400845947 |q (electronic bk.) | ||
020 | |a 1283851288 | ||
020 | |a 9781283851282 | ||
020 | |z 9780691131382 | ||
020 | |z 0691131384 | ||
035 | |a (OCoLC)823170151 |z (OCoLC)652274206 |z (OCoLC)945911924 |z (OCoLC)961604097 |z (OCoLC)962592164 |z (OCoLC)988450667 |z (OCoLC)991961271 |z (OCoLC)994998387 |z (OCoLC)1037712810 |z (OCoLC)1038682680 |z (OCoLC)1045493533 |z (OCoLC)1055337770 |z (OCoLC)1058139922 |z (OCoLC)1065157518 |z (OCoLC)1153452799 |z (OCoLC)1162006403 |z (OCoLC)1181901229 |z (OCoLC)1228547409 | ||
037 | |a 22573/ctt1jkhx4 |b JSTOR | ||
050 | 4 | |a QA183 |b .D38 2008eb | |
072 | 7 | |a MAT |x 014000 |2 bisacsh | |
072 | 7 | |a MAT012000 |2 bisacsh | |
072 | 7 | |a MAT014000 |2 bisacsh | |
072 | 7 | |a MAT038000 |2 bisacsh | |
082 | 7 | |a 512/.2 |2 22 | |
084 | |a 20F55 |a 20-02 |a 57-02 |a 57M07 |2 msc | ||
084 | |a SK 260 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Davis, Michael, |d 1949 April 26- |1 https://id.oclc.org/worldcat/entity/E39PCjybHcVTrgHrfh9txQ66gC |0 http://id.loc.gov/authorities/names/n78007361 | |
245 | 1 | 4 | |a The geometry and topology of coxeter groups / |c Michael W. Davis. |
260 | |a Princeton : |b Princeton University Press, |c ©2008. | ||
300 | |a 1 online resource (xiv, 584 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society monographs series ; |v 32 | |
500 | |a Series numbering from spine. | ||
504 | |a Includes bibliographical references (pages 555-572) and index. | ||
520 | 1 | |a "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--Jacket | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; Contents; Preface; Chapter 1 INTRODUCTION AND PREVIEW; 1.1 Introduction; 1.2 A Preview of the Right-Angled Case; Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY; 2.1 Cayley Graphs and Word Metrics; 2.2 Cayley 2-Complexes; 2.3 Background on Aspherical Spaces; Chapter 3 COXETER GROUPS; 3.1 Dihedral Groups; 3.2 Reflection Systems; 3.3 Coxeter Systems; 3.4 The Word Problem; 3.5 Coxeter Diagrams; Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS; 4.1 Special Subgroups in Coxeter Groups; 4.2 Reflections; 4.3 The Shortest Element in a Special Coset | |
505 | 8 | |a 4.4 Another Characterization of Coxeter Groups4.5 Convex Subsets of W; 4.6 The Element of Longest Length; 4.7 The Letters with Which a Reduced Expression Can End; 4.8 A Lemma of Tits; 4.9 Subgroups Generated by Reflections; 4.10 Normalizers of Special Subgroups; Chapter 5 THE BASIC CONSTRUCTION; 5.1 The Space U; 5.2 The Case of a Pre-Coxeter System; 5.3 Sectors in U; Chapter 6 GEOMETRIC REFLECTION GROUPS; 6.1 Linear Reflections; 6.2 Spaces of Constant Curvature; 6.3 Polytopes with Nonobtuse Dihedral Angles; 6.4 The Developing Map; 6.5 Polygon Groups | |
546 | |a English. | ||
650 | 0 | |a Coxeter groups. |0 http://id.loc.gov/authorities/subjects/sh00000209 | |
650 | 0 | |a Geometric group theory. |0 http://id.loc.gov/authorities/subjects/sh92001537 | |
650 | 6 | |a Groupes de Coxeter. | |
650 | 6 | |a Théorie géométrique des groupes. | |
650 | 7 | |a MATHEMATICS |x Group Theory. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Geometry |x General. |2 bisacsh | |
650 | 7 | |a Coxeter groups |2 fast | |
650 | 7 | |a Geometric group theory |2 fast | |
650 | 7 | |a Coxeter-Gruppe |2 gnd |0 http://d-nb.info/gnd/4261522-7 | |
758 | |i has work: |a The geometry and topology of coxeter groups (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFvgRfmYHFR63XYQG3qtgC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Davis, Michael, 1949 April 26- |t Geometry and topology of coxeter groups. |d Princeton : Princeton University Press, ©2008 |z 9780691131382 |w (DLC) 2006052879 |w (OCoLC)77485786 |
830 | 0 | |a London Mathematical Society monographs ; |v new ser., no. 32. |0 http://id.loc.gov/authorities/names/n86741199 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=507379 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=507379 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH28073918 | ||
938 | |a ebrary |b EBRY |n ebr10631229 | ||
938 | |a EBSCOhost |b EBSC |n 507379 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis24345363 | ||
938 | |a YBP Library Services |b YANK |n 9939723 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn823170151 |
---|---|
_version_ | 1813903595833131010 |
adam_text | |
any_adam_object | |
author | Davis, Michael, 1949 April 26- |
author_GND | http://id.loc.gov/authorities/names/n78007361 |
author_facet | Davis, Michael, 1949 April 26- |
author_role | |
author_sort | Davis, Michael, 1949 April 26- |
author_variant | m d md |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA183 |
callnumber-raw | QA183 .D38 2008eb |
callnumber-search | QA183 .D38 2008eb |
callnumber-sort | QA 3183 D38 42008EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
collection | ZDB-4-EBA |
contents | Cover; Contents; Preface; Chapter 1 INTRODUCTION AND PREVIEW; 1.1 Introduction; 1.2 A Preview of the Right-Angled Case; Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY; 2.1 Cayley Graphs and Word Metrics; 2.2 Cayley 2-Complexes; 2.3 Background on Aspherical Spaces; Chapter 3 COXETER GROUPS; 3.1 Dihedral Groups; 3.2 Reflection Systems; 3.3 Coxeter Systems; 3.4 The Word Problem; 3.5 Coxeter Diagrams; Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS; 4.1 Special Subgroups in Coxeter Groups; 4.2 Reflections; 4.3 The Shortest Element in a Special Coset 4.4 Another Characterization of Coxeter Groups4.5 Convex Subsets of W; 4.6 The Element of Longest Length; 4.7 The Letters with Which a Reduced Expression Can End; 4.8 A Lemma of Tits; 4.9 Subgroups Generated by Reflections; 4.10 Normalizers of Special Subgroups; Chapter 5 THE BASIC CONSTRUCTION; 5.1 The Space U; 5.2 The Case of a Pre-Coxeter System; 5.3 Sectors in U; Chapter 6 GEOMETRIC REFLECTION GROUPS; 6.1 Linear Reflections; 6.2 Spaces of Constant Curvature; 6.3 Polytopes with Nonobtuse Dihedral Angles; 6.4 The Developing Map; 6.5 Polygon Groups |
ctrlnum | (OCoLC)823170151 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05589cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn823170151</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">130102s2008 njua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">OCLCE</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCA</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCA</subfield><subfield code="d">JSTOR</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CHVBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">CCO</subfield><subfield code="d">OCLCO</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IOG</subfield><subfield code="d">U3W</subfield><subfield code="d">EZ9</subfield><subfield code="d">UUM</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">REC</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">HS0</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">MM9</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">LUU</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA768809</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">013829036</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">652274206</subfield><subfield code="a">945911924</subfield><subfield code="a">961604097</subfield><subfield code="a">962592164</subfield><subfield code="a">988450667</subfield><subfield code="a">991961271</subfield><subfield code="a">994998387</subfield><subfield code="a">1037712810</subfield><subfield code="a">1038682680</subfield><subfield code="a">1045493533</subfield><subfield code="a">1055337770</subfield><subfield code="a">1058139922</subfield><subfield code="a">1065157518</subfield><subfield code="a">1153452799</subfield><subfield code="a">1162006403</subfield><subfield code="a">1181901229</subfield><subfield code="a">1228547409</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400845941</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400845947</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283851288</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283851282</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780691131382</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0691131384</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)823170151</subfield><subfield code="z">(OCoLC)652274206</subfield><subfield code="z">(OCoLC)945911924</subfield><subfield code="z">(OCoLC)961604097</subfield><subfield code="z">(OCoLC)962592164</subfield><subfield code="z">(OCoLC)988450667</subfield><subfield code="z">(OCoLC)991961271</subfield><subfield code="z">(OCoLC)994998387</subfield><subfield code="z">(OCoLC)1037712810</subfield><subfield code="z">(OCoLC)1038682680</subfield><subfield code="z">(OCoLC)1045493533</subfield><subfield code="z">(OCoLC)1055337770</subfield><subfield code="z">(OCoLC)1058139922</subfield><subfield code="z">(OCoLC)1065157518</subfield><subfield code="z">(OCoLC)1153452799</subfield><subfield code="z">(OCoLC)1162006403</subfield><subfield code="z">(OCoLC)1181901229</subfield><subfield code="z">(OCoLC)1228547409</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">22573/ctt1jkhx4</subfield><subfield code="b">JSTOR</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA183</subfield><subfield code="b">.D38 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT012000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT014000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20F55</subfield><subfield code="a">20-02</subfield><subfield code="a">57-02</subfield><subfield code="a">57M07</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davis, Michael,</subfield><subfield code="d">1949 April 26-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjybHcVTrgHrfh9txQ66gC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n78007361</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The geometry and topology of coxeter groups /</subfield><subfield code="c">Michael W. Davis.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Princeton :</subfield><subfield code="b">Princeton University Press,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiv, 584 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society monographs series ;</subfield><subfield code="v">32</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Series numbering from spine.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 555-572) and index.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--Jacket</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; Preface; Chapter 1 INTRODUCTION AND PREVIEW; 1.1 Introduction; 1.2 A Preview of the Right-Angled Case; Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY; 2.1 Cayley Graphs and Word Metrics; 2.2 Cayley 2-Complexes; 2.3 Background on Aspherical Spaces; Chapter 3 COXETER GROUPS; 3.1 Dihedral Groups; 3.2 Reflection Systems; 3.3 Coxeter Systems; 3.4 The Word Problem; 3.5 Coxeter Diagrams; Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS; 4.1 Special Subgroups in Coxeter Groups; 4.2 Reflections; 4.3 The Shortest Element in a Special Coset</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.4 Another Characterization of Coxeter Groups4.5 Convex Subsets of W; 4.6 The Element of Longest Length; 4.7 The Letters with Which a Reduced Expression Can End; 4.8 A Lemma of Tits; 4.9 Subgroups Generated by Reflections; 4.10 Normalizers of Special Subgroups; Chapter 5 THE BASIC CONSTRUCTION; 5.1 The Space U; 5.2 The Case of a Pre-Coxeter System; 5.3 Sectors in U; Chapter 6 GEOMETRIC REFLECTION GROUPS; 6.1 Linear Reflections; 6.2 Spaces of Constant Curvature; 6.3 Polytopes with Nonobtuse Dihedral Angles; 6.4 The Developing Map; 6.5 Polygon Groups</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Coxeter groups.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh00000209</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometric group theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh92001537</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de Coxeter.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie géométrique des groupes.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Group Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coxeter groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometric group theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4261522-7</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">The geometry and topology of coxeter groups (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFvgRfmYHFR63XYQG3qtgC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Davis, Michael, 1949 April 26-</subfield><subfield code="t">Geometry and topology of coxeter groups.</subfield><subfield code="d">Princeton : Princeton University Press, ©2008</subfield><subfield code="z">9780691131382</subfield><subfield code="w">(DLC) 2006052879</subfield><subfield code="w">(OCoLC)77485786</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society monographs ;</subfield><subfield code="v">new ser., no. 32.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n86741199</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=507379</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=507379</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28073918</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10631229</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">507379</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis24345363</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9939723</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn823170151 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:21:11Z |
institution | BVB |
isbn | 9781400845941 1400845947 1283851288 9781283851282 |
language | English |
oclc_num | 823170151 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (xiv, 584 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton University Press, |
record_format | marc |
series | London Mathematical Society monographs ; |
series2 | London Mathematical Society monographs series ; |
spelling | Davis, Michael, 1949 April 26- https://id.oclc.org/worldcat/entity/E39PCjybHcVTrgHrfh9txQ66gC http://id.loc.gov/authorities/names/n78007361 The geometry and topology of coxeter groups / Michael W. Davis. Princeton : Princeton University Press, ©2008. 1 online resource (xiv, 584 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society monographs series ; 32 Series numbering from spine. Includes bibliographical references (pages 555-572) and index. "The Geometry and Topology of Coxeter Groups is a comprehensive and authoritative treatment of Coxeter groups from the viewpoint of geometric group theory. Groups generated by reflections are ubiquitous in mathematics, and there are classical examples of reflection groups in spherical, Euclidean, and hyperbolic geometry. Any Coxeter group can be realized as a group generated by reflection on a certain contractible cell complex, and this complex is the principal subject of this book."--Jacket Print version record. Cover; Contents; Preface; Chapter 1 INTRODUCTION AND PREVIEW; 1.1 Introduction; 1.2 A Preview of the Right-Angled Case; Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY; 2.1 Cayley Graphs and Word Metrics; 2.2 Cayley 2-Complexes; 2.3 Background on Aspherical Spaces; Chapter 3 COXETER GROUPS; 3.1 Dihedral Groups; 3.2 Reflection Systems; 3.3 Coxeter Systems; 3.4 The Word Problem; 3.5 Coxeter Diagrams; Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS; 4.1 Special Subgroups in Coxeter Groups; 4.2 Reflections; 4.3 The Shortest Element in a Special Coset 4.4 Another Characterization of Coxeter Groups4.5 Convex Subsets of W; 4.6 The Element of Longest Length; 4.7 The Letters with Which a Reduced Expression Can End; 4.8 A Lemma of Tits; 4.9 Subgroups Generated by Reflections; 4.10 Normalizers of Special Subgroups; Chapter 5 THE BASIC CONSTRUCTION; 5.1 The Space U; 5.2 The Case of a Pre-Coxeter System; 5.3 Sectors in U; Chapter 6 GEOMETRIC REFLECTION GROUPS; 6.1 Linear Reflections; 6.2 Spaces of Constant Curvature; 6.3 Polytopes with Nonobtuse Dihedral Angles; 6.4 The Developing Map; 6.5 Polygon Groups English. Coxeter groups. http://id.loc.gov/authorities/subjects/sh00000209 Geometric group theory. http://id.loc.gov/authorities/subjects/sh92001537 Groupes de Coxeter. Théorie géométrique des groupes. MATHEMATICS Group Theory. bisacsh MATHEMATICS Geometry General. bisacsh Coxeter groups fast Geometric group theory fast Coxeter-Gruppe gnd http://d-nb.info/gnd/4261522-7 has work: The geometry and topology of coxeter groups (Text) https://id.oclc.org/worldcat/entity/E39PCFvgRfmYHFR63XYQG3qtgC https://id.oclc.org/worldcat/ontology/hasWork Print version: Davis, Michael, 1949 April 26- Geometry and topology of coxeter groups. Princeton : Princeton University Press, ©2008 9780691131382 (DLC) 2006052879 (OCoLC)77485786 London Mathematical Society monographs ; new ser., no. 32. http://id.loc.gov/authorities/names/n86741199 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=507379 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=507379 Volltext |
spellingShingle | Davis, Michael, 1949 April 26- The geometry and topology of coxeter groups / London Mathematical Society monographs ; Cover; Contents; Preface; Chapter 1 INTRODUCTION AND PREVIEW; 1.1 Introduction; 1.2 A Preview of the Right-Angled Case; Chapter 2 SOME BASIC NOTIONS IN GEOMETRIC GROUP THEORY; 2.1 Cayley Graphs and Word Metrics; 2.2 Cayley 2-Complexes; 2.3 Background on Aspherical Spaces; Chapter 3 COXETER GROUPS; 3.1 Dihedral Groups; 3.2 Reflection Systems; 3.3 Coxeter Systems; 3.4 The Word Problem; 3.5 Coxeter Diagrams; Chapter 4 MORE COMBINATORIAL THEORY OF COXETER GROUPS; 4.1 Special Subgroups in Coxeter Groups; 4.2 Reflections; 4.3 The Shortest Element in a Special Coset 4.4 Another Characterization of Coxeter Groups4.5 Convex Subsets of W; 4.6 The Element of Longest Length; 4.7 The Letters with Which a Reduced Expression Can End; 4.8 A Lemma of Tits; 4.9 Subgroups Generated by Reflections; 4.10 Normalizers of Special Subgroups; Chapter 5 THE BASIC CONSTRUCTION; 5.1 The Space U; 5.2 The Case of a Pre-Coxeter System; 5.3 Sectors in U; Chapter 6 GEOMETRIC REFLECTION GROUPS; 6.1 Linear Reflections; 6.2 Spaces of Constant Curvature; 6.3 Polytopes with Nonobtuse Dihedral Angles; 6.4 The Developing Map; 6.5 Polygon Groups Coxeter groups. http://id.loc.gov/authorities/subjects/sh00000209 Geometric group theory. http://id.loc.gov/authorities/subjects/sh92001537 Groupes de Coxeter. Théorie géométrique des groupes. MATHEMATICS Group Theory. bisacsh MATHEMATICS Geometry General. bisacsh Coxeter groups fast Geometric group theory fast Coxeter-Gruppe gnd http://d-nb.info/gnd/4261522-7 |
subject_GND | http://id.loc.gov/authorities/subjects/sh00000209 http://id.loc.gov/authorities/subjects/sh92001537 http://d-nb.info/gnd/4261522-7 |
title | The geometry and topology of coxeter groups / |
title_auth | The geometry and topology of coxeter groups / |
title_exact_search | The geometry and topology of coxeter groups / |
title_full | The geometry and topology of coxeter groups / Michael W. Davis. |
title_fullStr | The geometry and topology of coxeter groups / Michael W. Davis. |
title_full_unstemmed | The geometry and topology of coxeter groups / Michael W. Davis. |
title_short | The geometry and topology of coxeter groups / |
title_sort | geometry and topology of coxeter groups |
topic | Coxeter groups. http://id.loc.gov/authorities/subjects/sh00000209 Geometric group theory. http://id.loc.gov/authorities/subjects/sh92001537 Groupes de Coxeter. Théorie géométrique des groupes. MATHEMATICS Group Theory. bisacsh MATHEMATICS Geometry General. bisacsh Coxeter groups fast Geometric group theory fast Coxeter-Gruppe gnd http://d-nb.info/gnd/4261522-7 |
topic_facet | Coxeter groups. Geometric group theory. Groupes de Coxeter. Théorie géométrique des groupes. MATHEMATICS Group Theory. MATHEMATICS Geometry General. Coxeter groups Geometric group theory Coxeter-Gruppe |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=507379 |
work_keys_str_mv | AT davismichael thegeometryandtopologyofcoxetergroups AT davismichael geometryandtopologyofcoxetergroups |