Appalachian set theory :: 2006-2012 /
Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience.
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
406. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781139208574 1139208578 9781139840699 113984069X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn821869871 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121218s2012 enk ob 000 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d EBLCP |d CDX |d OCLCO |d MHW |d DEBSZ |d OCLCQ |d OCLCF |d N$T |d UMI |d COO |d OCLCQ |d AU@ |d OCLCQ |d S8J |d OCLCQ |d LUN |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d S9M |d OCLCL | ||
019 | |a 825072109 |a 837185876 |a 1167168953 | ||
020 | |a 9781139208574 |q (electronic bk.) | ||
020 | |a 1139208578 |q (electronic bk.) | ||
020 | |a 9781139840699 |q (electronic bk.) | ||
020 | |a 113984069X |q (electronic bk.) | ||
020 | |z 9781299405769 | ||
020 | |z 1299405762 | ||
020 | |z 9781139843065 | ||
020 | |z 1139843060 | ||
020 | |z 1107608503 | ||
020 | |z 9781107608504 | ||
035 | |a (OCoLC)821869871 |z (OCoLC)825072109 |z (OCoLC)837185876 |z (OCoLC)1167168953 | ||
037 | |a 471826 |b MIL | ||
050 | 4 | |a QA9 |b .A66 2012 | |
072 | 7 | |a MAT |x 000000 |2 bisacsh | |
082 | 7 | |a 511.3 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Appalachian set theory : |b 2006-2012 / |c edited by James Cummings and Ernest Schimmerling. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 406 | |
588 | 0 | |a Print version record. | |
520 | |a Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience. | ||
504 | |a Includes bibliographical references. | ||
505 | 0 | |a Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Introduction; 1 An introduction to Pmax forcing; 1 Introduction; 2 Setup: iterations and the definition of Pmax; 3 First properties of Pmax; 4 Existence of Pmax conditions; 5 S2 maximality; 6 Discussion; References; 2 Countable Borel Equivalence Relations; First lecture; 1.1 Standard Borel spaces and Borel equivalence relations; 1.2 Borel reducibility; 1.3 Countable Borel equivalence relations; 1.4 Turing equivalence and the Martin conjectures; Second lecture. | |
505 | 8 | |a 2.1 The fundamental question in the theory of countable Borel equivalence relations2.2 Essentially free countable Borel equivalence relations; 2.3 Bernoulli actions, Popa superrigidity, and the proof of Theorem 2.11; 2.4 Free and non-essentially free countable Borel equivalence relations; Third lecture; 3.1 Ergodicity, strong mixing and Borel cocycles; 3.2 Popa's Cocycle Superrigidity Theorem and the proof of Theorem 2.16; 3.3 Torsion-free abelian groups of finite rank; 3.4 E0-ergodicity; 3.5 The non-universality of the isomorphism relation for torsion-free abelian groups of finite rank. | |
505 | 8 | |a Fourth lecture4.1 Containment vs. Borel reducibility; 4.2 Unique ergodicity and ergodic components; 4.3 The proof of Theorem 4.5; 4.4 Profinite actions and Ioana superrigidity; Open problems; 5.1 Hyperfinite relations.; 5.2 Treeable relations.; 5.3 Universal relations.; References; 3 Set theory and operator algebras; Acknowledgments; 1 Introduction; 1.1 Nonseparable C*-algebras; 1.2 Ultrapowers; 1.3 Structure of corona algebras; 1.4 Classification and descriptive set theory; 2 Hilbert spaces and operators; 2.1 Normal operators and the spectral theorem; 2.2 The spectrum of an operator. | |
505 | 8 | |a 3 C*-algebrasTypes of operators in C*-algebras; 3.1 Some examples of C*-algebras; Full matrix algebras; The algebra of compact operators; The Calkin algebra; 3.2 Automatic continuity and the Gelfand transform; 3.3 Continuous functional calculus; 3.4 More examples of C*-algebras; Direct limits; UHF (uniformly hyperfinite) algebras; AF (approximately finite) algebras; Even more examples; 4 Positivity, states and the GNS construction; 4.1 Irreducible representations and pure states; 4.2 On the existence of states; 5 Projections in the Calkin algebra; Stone duality. | |
650 | 0 | |a Logic, Symbolic and mathematical. |0 http://id.loc.gov/authorities/subjects/sh85078115 | |
650 | 6 | |a Logique symbolique et mathématique. | |
650 | 7 | |a MATHEMATICS |x General. |2 bisacsh | |
650 | 7 | |a Lógica matemática |2 embne | |
650 | 7 | |a Logic, Symbolic and mathematical |2 fast | |
700 | 1 | |a Cummings, James. | |
700 | 1 | |a Schimmerling, Ernest. | |
758 | |i has work: |a Appalachian set theory (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFwfbDDPbhRJkHhhbyWdQq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Appalachian set theory. |d [S.l.] : Cambridge University Pres, 2012 |z 1107608503 |w (OCoLC)818143101 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 406. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498398 |3 Volltext |
938 | |a Coutts Information Services |b COUT |n 25154666 | ||
938 | |a ProQuest Ebook Central |b EBLB |n EBL1057561 | ||
938 | |a EBSCOhost |b EBSC |n 498398 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn821869871 |
---|---|
_version_ | 1816882216985165824 |
adam_text | |
any_adam_object | |
author2 | Cummings, James Schimmerling, Ernest |
author2_role | |
author2_variant | j c jc e s es |
author_facet | Cummings, James Schimmerling, Ernest |
author_sort | Cummings, James |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9 .A66 2012 |
callnumber-search | QA9 .A66 2012 |
callnumber-sort | QA 19 A66 42012 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Introduction; 1 An introduction to Pmax forcing; 1 Introduction; 2 Setup: iterations and the definition of Pmax; 3 First properties of Pmax; 4 Existence of Pmax conditions; 5 S2 maximality; 6 Discussion; References; 2 Countable Borel Equivalence Relations; First lecture; 1.1 Standard Borel spaces and Borel equivalence relations; 1.2 Borel reducibility; 1.3 Countable Borel equivalence relations; 1.4 Turing equivalence and the Martin conjectures; Second lecture. 2.1 The fundamental question in the theory of countable Borel equivalence relations2.2 Essentially free countable Borel equivalence relations; 2.3 Bernoulli actions, Popa superrigidity, and the proof of Theorem 2.11; 2.4 Free and non-essentially free countable Borel equivalence relations; Third lecture; 3.1 Ergodicity, strong mixing and Borel cocycles; 3.2 Popa's Cocycle Superrigidity Theorem and the proof of Theorem 2.16; 3.3 Torsion-free abelian groups of finite rank; 3.4 E0-ergodicity; 3.5 The non-universality of the isomorphism relation for torsion-free abelian groups of finite rank. Fourth lecture4.1 Containment vs. Borel reducibility; 4.2 Unique ergodicity and ergodic components; 4.3 The proof of Theorem 4.5; 4.4 Profinite actions and Ioana superrigidity; Open problems; 5.1 Hyperfinite relations.; 5.2 Treeable relations.; 5.3 Universal relations.; References; 3 Set theory and operator algebras; Acknowledgments; 1 Introduction; 1.1 Nonseparable C*-algebras; 1.2 Ultrapowers; 1.3 Structure of corona algebras; 1.4 Classification and descriptive set theory; 2 Hilbert spaces and operators; 2.1 Normal operators and the spectral theorem; 2.2 The spectrum of an operator. 3 C*-algebrasTypes of operators in C*-algebras; 3.1 Some examples of C*-algebras; Full matrix algebras; The algebra of compact operators; The Calkin algebra; 3.2 Automatic continuity and the Gelfand transform; 3.3 Continuous functional calculus; 3.4 More examples of C*-algebras; Direct limits; UHF (uniformly hyperfinite) algebras; AF (approximately finite) algebras; Even more examples; 4 Positivity, states and the GNS construction; 4.1 Irreducible representations and pure states; 4.2 On the existence of states; 5 Projections in the Calkin algebra; Stone duality. |
ctrlnum | (OCoLC)821869871 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05115cam a2200661 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn821869871</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121218s2012 enk ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">EBLCP</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">MHW</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S8J</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LUN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">825072109</subfield><subfield code="a">837185876</subfield><subfield code="a">1167168953</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139208574</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139208578</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139840699</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">113984069X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781299405769</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1299405762</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781139843065</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1139843060</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107608503</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107608504</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)821869871</subfield><subfield code="z">(OCoLC)825072109</subfield><subfield code="z">(OCoLC)837185876</subfield><subfield code="z">(OCoLC)1167168953</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">471826</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA9</subfield><subfield code="b">.A66 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">000000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Appalachian set theory :</subfield><subfield code="b">2006-2012 /</subfield><subfield code="c">edited by James Cummings and Ernest Schimmerling.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">406</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Introduction; 1 An introduction to Pmax forcing; 1 Introduction; 2 Setup: iterations and the definition of Pmax; 3 First properties of Pmax; 4 Existence of Pmax conditions; 5 S2 maximality; 6 Discussion; References; 2 Countable Borel Equivalence Relations; First lecture; 1.1 Standard Borel spaces and Borel equivalence relations; 1.2 Borel reducibility; 1.3 Countable Borel equivalence relations; 1.4 Turing equivalence and the Martin conjectures; Second lecture.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1 The fundamental question in the theory of countable Borel equivalence relations2.2 Essentially free countable Borel equivalence relations; 2.3 Bernoulli actions, Popa superrigidity, and the proof of Theorem 2.11; 2.4 Free and non-essentially free countable Borel equivalence relations; Third lecture; 3.1 Ergodicity, strong mixing and Borel cocycles; 3.2 Popa's Cocycle Superrigidity Theorem and the proof of Theorem 2.16; 3.3 Torsion-free abelian groups of finite rank; 3.4 E0-ergodicity; 3.5 The non-universality of the isomorphism relation for torsion-free abelian groups of finite rank.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Fourth lecture4.1 Containment vs. Borel reducibility; 4.2 Unique ergodicity and ergodic components; 4.3 The proof of Theorem 4.5; 4.4 Profinite actions and Ioana superrigidity; Open problems; 5.1 Hyperfinite relations.; 5.2 Treeable relations.; 5.3 Universal relations.; References; 3 Set theory and operator algebras; Acknowledgments; 1 Introduction; 1.1 Nonseparable C*-algebras; 1.2 Ultrapowers; 1.3 Structure of corona algebras; 1.4 Classification and descriptive set theory; 2 Hilbert spaces and operators; 2.1 Normal operators and the spectral theorem; 2.2 The spectrum of an operator.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3 C*-algebrasTypes of operators in C*-algebras; 3.1 Some examples of C*-algebras; Full matrix algebras; The algebra of compact operators; The Calkin algebra; 3.2 Automatic continuity and the Gelfand transform; 3.3 Continuous functional calculus; 3.4 More examples of C*-algebras; Direct limits; UHF (uniformly hyperfinite) algebras; AF (approximately finite) algebras; Even more examples; 4 Positivity, states and the GNS construction; 4.1 Irreducible representations and pure states; 4.2 On the existence of states; 5 Projections in the Calkin algebra; Stone duality.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Logic, Symbolic and mathematical.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078115</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Logique symbolique et mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lógica matemática</subfield><subfield code="2">embne</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cummings, James.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schimmerling, Ernest.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Appalachian set theory (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFwfbDDPbhRJkHhhbyWdQq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Appalachian set theory.</subfield><subfield code="d">[S.l.] : Cambridge University Pres, 2012</subfield><subfield code="z">1107608503</subfield><subfield code="w">(OCoLC)818143101</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">406.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498398</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">25154666</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1057561</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">498398</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn821869871 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:06Z |
institution | BVB |
isbn | 9781139208574 1139208578 9781139840699 113984069X |
language | English |
oclc_num | 821869871 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Appalachian set theory : 2006-2012 / edited by James Cummings and Ernest Schimmerling. Cambridge : Cambridge University Press, 2012. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 406 Print version record. Papers based on a series of workshops where prominent researchers present exciting developments in set theory to a broad audience. Includes bibliographical references. Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Introduction; 1 An introduction to Pmax forcing; 1 Introduction; 2 Setup: iterations and the definition of Pmax; 3 First properties of Pmax; 4 Existence of Pmax conditions; 5 S2 maximality; 6 Discussion; References; 2 Countable Borel Equivalence Relations; First lecture; 1.1 Standard Borel spaces and Borel equivalence relations; 1.2 Borel reducibility; 1.3 Countable Borel equivalence relations; 1.4 Turing equivalence and the Martin conjectures; Second lecture. 2.1 The fundamental question in the theory of countable Borel equivalence relations2.2 Essentially free countable Borel equivalence relations; 2.3 Bernoulli actions, Popa superrigidity, and the proof of Theorem 2.11; 2.4 Free and non-essentially free countable Borel equivalence relations; Third lecture; 3.1 Ergodicity, strong mixing and Borel cocycles; 3.2 Popa's Cocycle Superrigidity Theorem and the proof of Theorem 2.16; 3.3 Torsion-free abelian groups of finite rank; 3.4 E0-ergodicity; 3.5 The non-universality of the isomorphism relation for torsion-free abelian groups of finite rank. Fourth lecture4.1 Containment vs. Borel reducibility; 4.2 Unique ergodicity and ergodic components; 4.3 The proof of Theorem 4.5; 4.4 Profinite actions and Ioana superrigidity; Open problems; 5.1 Hyperfinite relations.; 5.2 Treeable relations.; 5.3 Universal relations.; References; 3 Set theory and operator algebras; Acknowledgments; 1 Introduction; 1.1 Nonseparable C*-algebras; 1.2 Ultrapowers; 1.3 Structure of corona algebras; 1.4 Classification and descriptive set theory; 2 Hilbert spaces and operators; 2.1 Normal operators and the spectral theorem; 2.2 The spectrum of an operator. 3 C*-algebrasTypes of operators in C*-algebras; 3.1 Some examples of C*-algebras; Full matrix algebras; The algebra of compact operators; The Calkin algebra; 3.2 Automatic continuity and the Gelfand transform; 3.3 Continuous functional calculus; 3.4 More examples of C*-algebras; Direct limits; UHF (uniformly hyperfinite) algebras; AF (approximately finite) algebras; Even more examples; 4 Positivity, states and the GNS construction; 4.1 Irreducible representations and pure states; 4.2 On the existence of states; 5 Projections in the Calkin algebra; Stone duality. Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Logique symbolique et mathématique. MATHEMATICS General. bisacsh Lógica matemática embne Logic, Symbolic and mathematical fast Cummings, James. Schimmerling, Ernest. has work: Appalachian set theory (Text) https://id.oclc.org/worldcat/entity/E39PCFwfbDDPbhRJkHhhbyWdQq https://id.oclc.org/worldcat/ontology/hasWork Print version: Appalachian set theory. [S.l.] : Cambridge University Pres, 2012 1107608503 (OCoLC)818143101 London Mathematical Society lecture note series ; 406. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498398 Volltext |
spellingShingle | Appalachian set theory : 2006-2012 / London Mathematical Society lecture note series ; Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; Contents; Contributors; Introduction; 1 An introduction to Pmax forcing; 1 Introduction; 2 Setup: iterations and the definition of Pmax; 3 First properties of Pmax; 4 Existence of Pmax conditions; 5 S2 maximality; 6 Discussion; References; 2 Countable Borel Equivalence Relations; First lecture; 1.1 Standard Borel spaces and Borel equivalence relations; 1.2 Borel reducibility; 1.3 Countable Borel equivalence relations; 1.4 Turing equivalence and the Martin conjectures; Second lecture. 2.1 The fundamental question in the theory of countable Borel equivalence relations2.2 Essentially free countable Borel equivalence relations; 2.3 Bernoulli actions, Popa superrigidity, and the proof of Theorem 2.11; 2.4 Free and non-essentially free countable Borel equivalence relations; Third lecture; 3.1 Ergodicity, strong mixing and Borel cocycles; 3.2 Popa's Cocycle Superrigidity Theorem and the proof of Theorem 2.16; 3.3 Torsion-free abelian groups of finite rank; 3.4 E0-ergodicity; 3.5 The non-universality of the isomorphism relation for torsion-free abelian groups of finite rank. Fourth lecture4.1 Containment vs. Borel reducibility; 4.2 Unique ergodicity and ergodic components; 4.3 The proof of Theorem 4.5; 4.4 Profinite actions and Ioana superrigidity; Open problems; 5.1 Hyperfinite relations.; 5.2 Treeable relations.; 5.3 Universal relations.; References; 3 Set theory and operator algebras; Acknowledgments; 1 Introduction; 1.1 Nonseparable C*-algebras; 1.2 Ultrapowers; 1.3 Structure of corona algebras; 1.4 Classification and descriptive set theory; 2 Hilbert spaces and operators; 2.1 Normal operators and the spectral theorem; 2.2 The spectrum of an operator. 3 C*-algebrasTypes of operators in C*-algebras; 3.1 Some examples of C*-algebras; Full matrix algebras; The algebra of compact operators; The Calkin algebra; 3.2 Automatic continuity and the Gelfand transform; 3.3 Continuous functional calculus; 3.4 More examples of C*-algebras; Direct limits; UHF (uniformly hyperfinite) algebras; AF (approximately finite) algebras; Even more examples; 4 Positivity, states and the GNS construction; 4.1 Irreducible representations and pure states; 4.2 On the existence of states; 5 Projections in the Calkin algebra; Stone duality. Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Logique symbolique et mathématique. MATHEMATICS General. bisacsh Lógica matemática embne Logic, Symbolic and mathematical fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85078115 |
title | Appalachian set theory : 2006-2012 / |
title_auth | Appalachian set theory : 2006-2012 / |
title_exact_search | Appalachian set theory : 2006-2012 / |
title_full | Appalachian set theory : 2006-2012 / edited by James Cummings and Ernest Schimmerling. |
title_fullStr | Appalachian set theory : 2006-2012 / edited by James Cummings and Ernest Schimmerling. |
title_full_unstemmed | Appalachian set theory : 2006-2012 / edited by James Cummings and Ernest Schimmerling. |
title_short | Appalachian set theory : |
title_sort | appalachian set theory 2006 2012 |
title_sub | 2006-2012 / |
topic | Logic, Symbolic and mathematical. http://id.loc.gov/authorities/subjects/sh85078115 Logique symbolique et mathématique. MATHEMATICS General. bisacsh Lógica matemática embne Logic, Symbolic and mathematical fast |
topic_facet | Logic, Symbolic and mathematical. Logique symbolique et mathématique. MATHEMATICS General. Lógica matemática Logic, Symbolic and mathematical |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=498398 |
work_keys_str_mv | AT cummingsjames appalachiansettheory20062012 AT schimmerlingernest appalachiansettheory20062012 |