Unitary symmetry and combinatorics /:
This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific Pub. Co.,
©2008.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of recoupling matrices for quantum angular momentum is developed. For the general unitary group, polynomial forms in many variables called matrix Schur functions have the remarkable property of giving all irreducible representations of the general unitary group and are the basic objects of study. The structure of these irreducible polynomials and the reduction of their Kronecker product is developed in detail, as is the theory of tensor operators. |
Beschreibung: | 1 online resource (xxi, 619 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 597-609) and index. |
ISBN: | 9789812814739 9812814736 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn820944537 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 090522s2008 si a ob 001 0 eng d | ||
040 | |a LGG |b eng |e pn |c LGG |d OCLCO |d N$T |d IAC |d E7B |d OCLCF |d DEBSZ |d YDXCP |d MHW |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d STF |d AU@ |d M8D |d UKAHL |d OCLCQ |d K6U |d OCLCO |d OCLCQ |d OCLCO |d OCLCQ |d SXB |d OCLCQ | ||
019 | |a 851264362 |a 1086522433 | ||
020 | |a 9789812814739 |q (electronic bk.) | ||
020 | |a 9812814736 |q (electronic bk.) | ||
020 | |z 9789812814722 | ||
020 | |z 9812814728 | ||
035 | |a (OCoLC)820944537 |z (OCoLC)851264362 |z (OCoLC)1086522433 | ||
050 | 4 | |a QA167 | |
072 | 7 | |a MAT |x 036000 |2 bisacsh | |
082 | 7 | |a 511.6 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Louck, James D. | |
245 | 1 | 0 | |a Unitary symmetry and combinatorics / |c James D. Louck. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific Pub. Co., |c ©2008. | ||
300 | |a 1 online resource (xxi, 619 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 597-609) and index. | ||
505 | 0 | |a 1. Quantum angular momentum. 1.1. Background and viewpoint. 1.2 Abstract angular momentum. 1.3. SO(3, [symbol]) and SU(2) solid harmonics. 1.4. Combinatorial features. 1.5. Kronecker product of solid harmonics. 1.6. SU(n) solid harmonics. 1.7. Generalization to U(2) -- 2. Composite systems. 2.1. General setting. 2.2. Binary coupling theory. 2.3. Classification of recoupling matrices -- 3. Graphs and adjacency diagrams. 3.1. Binary trees and trivalent trees. 3.2. Nonisomorphic trivalent trees. 3.3. Cubic graphs and trivalent trees. 3.4. Cubic graphs -- 4. Generating functions. 4.1. Pfaffians and double Pfaffians. 4.2. Skew-symmetric matrix. 4.3. Triangle monomials. 4.4. Coupled wave functions. 4.5. Recoupling coefficients. 4.6. Special cases. 4.7. Concluding remarks -- 5. The [symbol]-polynomials: form. 5.1. Overview. 5.2. Defining relations. 5.3. Restriction to fewer variables. 5.4. Vector space aspects. 5.5. Fundamental structural relations. | |
505 | 0 | |a 6. Operator actions in Hilbert space. 6.1. Introductory remarks. 6.2. Action of fundamental shift operators. 6.3. Digraph interpretation. 6.4. Algebra of shift operators. 6.5. Hilbert space and [symbol]-polynomials. 6.6. Shift operator polynomials. 6.7. Kronecker product reduction. 6.8. More on explicit operator actions -- 7. The [symbol]-polynomials: structure. 7.1. The [symbol] matrices. 7.2. Reduction of [symbol]. 7.3. Binary tree structure: [symbol]-coefficients -- 8. The general linear and unitary groups. 8.1. Background and review. 8.2. GL(n, [symbol]) and its unitary subgroup U(n). 8.3. Commuting Hermitian observables. 8.4. Differential operator actions. 8.5. Eigenvalues of the Gelfand invariants -- 9. Tensor operator theory. 9.1. Introduction. 9.2. Unit tensor operators. 9.3. Canonical tensor operators. 9.4. Properties of reduced matrix elements. 9.5. The unitary group U(3). 9.6. The U(3) characteristic null spaces. 9.7. The U(3) : U(2) unit projective operators. | |
505 | 0 | |a 10. Compendium A. Basic algebraic objects. 10.1. Groups. 10.2. Rings. 10.3. Abstract Hilbert spaces. 10.4. Properties of matrices. 10.5. Tensor product spaces. 10.6. Vector spaces of polynomials. 10.7. Group representations -- 11. Compendium B: combinatorial objects. 11.1. Partitions and tableaux. 11.2. Young frames and tableaux. 11.3. Gelfand-Tsetlin patterns. 11.4. Generating functions and relations. 11.5. Multivariable special functions. 11.6. Symmetric functions. 11.7. Sylvester's identity. 11.8. Derivation of Weyl's dimension formula. 11.9. Other topics. | |
520 | |a This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of recoupling matrices for quantum angular momentum is developed. For the general unitary group, polynomial forms in many variables called matrix Schur functions have the remarkable property of giving all irreducible representations of the general unitary group and are the basic objects of study. The structure of these irreducible polynomials and the reduction of their Kronecker product is developed in detail, as is the theory of tensor operators. | ||
650 | 0 | |a Combinatorial analysis. |0 http://id.loc.gov/authorities/subjects/sh85028802 | |
650 | 0 | |a Eightfold way (Nuclear physics) |0 http://id.loc.gov/authorities/subjects/sh85041403 | |
650 | 6 | |a Analyse combinatoire. | |
650 | 6 | |a Symétrie unitaire. | |
650 | 7 | |a MATHEMATICS |x Combinatorics. |2 bisacsh | |
650 | 7 | |a Combinatorial analysis |2 fast | |
650 | 7 | |a Eightfold way (Nuclear physics) |2 fast | |
776 | 0 | 8 | |i Print version: |a Louck, James D. |t Unitary symmetry and combinatorics. |d Singapore ; Hackensack, NJ : World Scientific, ©2008 |z 9789812814722 |w (DLC) 2008300334 |w (OCoLC)273893634 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521211 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH24685788 | ||
938 | |a ebrary |b EBRY |n ebr10688197 | ||
938 | |a EBSCOhost |b EBSC |n 521211 | ||
938 | |a YBP Library Services |b YANK |n 9975191 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn820944537 |
---|---|
_version_ | 1816882216489189377 |
adam_text | |
any_adam_object | |
author | Louck, James D. |
author_facet | Louck, James D. |
author_role | |
author_sort | Louck, James D. |
author_variant | j d l jd jdl |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA167 |
callnumber-raw | QA167 |
callnumber-search | QA167 |
callnumber-sort | QA 3167 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Quantum angular momentum. 1.1. Background and viewpoint. 1.2 Abstract angular momentum. 1.3. SO(3, [symbol]) and SU(2) solid harmonics. 1.4. Combinatorial features. 1.5. Kronecker product of solid harmonics. 1.6. SU(n) solid harmonics. 1.7. Generalization to U(2) -- 2. Composite systems. 2.1. General setting. 2.2. Binary coupling theory. 2.3. Classification of recoupling matrices -- 3. Graphs and adjacency diagrams. 3.1. Binary trees and trivalent trees. 3.2. Nonisomorphic trivalent trees. 3.3. Cubic graphs and trivalent trees. 3.4. Cubic graphs -- 4. Generating functions. 4.1. Pfaffians and double Pfaffians. 4.2. Skew-symmetric matrix. 4.3. Triangle monomials. 4.4. Coupled wave functions. 4.5. Recoupling coefficients. 4.6. Special cases. 4.7. Concluding remarks -- 5. The [symbol]-polynomials: form. 5.1. Overview. 5.2. Defining relations. 5.3. Restriction to fewer variables. 5.4. Vector space aspects. 5.5. Fundamental structural relations. 6. Operator actions in Hilbert space. 6.1. Introductory remarks. 6.2. Action of fundamental shift operators. 6.3. Digraph interpretation. 6.4. Algebra of shift operators. 6.5. Hilbert space and [symbol]-polynomials. 6.6. Shift operator polynomials. 6.7. Kronecker product reduction. 6.8. More on explicit operator actions -- 7. The [symbol]-polynomials: structure. 7.1. The [symbol] matrices. 7.2. Reduction of [symbol]. 7.3. Binary tree structure: [symbol]-coefficients -- 8. The general linear and unitary groups. 8.1. Background and review. 8.2. GL(n, [symbol]) and its unitary subgroup U(n). 8.3. Commuting Hermitian observables. 8.4. Differential operator actions. 8.5. Eigenvalues of the Gelfand invariants -- 9. Tensor operator theory. 9.1. Introduction. 9.2. Unit tensor operators. 9.3. Canonical tensor operators. 9.4. Properties of reduced matrix elements. 9.5. The unitary group U(3). 9.6. The U(3) characteristic null spaces. 9.7. The U(3) : U(2) unit projective operators. 10. Compendium A. Basic algebraic objects. 10.1. Groups. 10.2. Rings. 10.3. Abstract Hilbert spaces. 10.4. Properties of matrices. 10.5. Tensor product spaces. 10.6. Vector spaces of polynomials. 10.7. Group representations -- 11. Compendium B: combinatorial objects. 11.1. Partitions and tableaux. 11.2. Young frames and tableaux. 11.3. Gelfand-Tsetlin patterns. 11.4. Generating functions and relations. 11.5. Multivariable special functions. 11.6. Symmetric functions. 11.7. Sylvester's identity. 11.8. Derivation of Weyl's dimension formula. 11.9. Other topics. |
ctrlnum | (OCoLC)820944537 |
dewey-full | 511.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.6 |
dewey-search | 511.6 |
dewey-sort | 3511.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05465cam a2200541 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn820944537</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">090522s2008 si a ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">IAC</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MHW</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">851264362</subfield><subfield code="a">1086522433</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812814739</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812814736</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789812814722</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9812814728</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820944537</subfield><subfield code="z">(OCoLC)851264362</subfield><subfield code="z">(OCoLC)1086522433</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA167</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">036000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.6</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Louck, James D.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unitary symmetry and combinatorics /</subfield><subfield code="c">James D. Louck.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific Pub. Co.,</subfield><subfield code="c">©2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxi, 619 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 597-609) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Quantum angular momentum. 1.1. Background and viewpoint. 1.2 Abstract angular momentum. 1.3. SO(3, [symbol]) and SU(2) solid harmonics. 1.4. Combinatorial features. 1.5. Kronecker product of solid harmonics. 1.6. SU(n) solid harmonics. 1.7. Generalization to U(2) -- 2. Composite systems. 2.1. General setting. 2.2. Binary coupling theory. 2.3. Classification of recoupling matrices -- 3. Graphs and adjacency diagrams. 3.1. Binary trees and trivalent trees. 3.2. Nonisomorphic trivalent trees. 3.3. Cubic graphs and trivalent trees. 3.4. Cubic graphs -- 4. Generating functions. 4.1. Pfaffians and double Pfaffians. 4.2. Skew-symmetric matrix. 4.3. Triangle monomials. 4.4. Coupled wave functions. 4.5. Recoupling coefficients. 4.6. Special cases. 4.7. Concluding remarks -- 5. The [symbol]-polynomials: form. 5.1. Overview. 5.2. Defining relations. 5.3. Restriction to fewer variables. 5.4. Vector space aspects. 5.5. Fundamental structural relations.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">6. Operator actions in Hilbert space. 6.1. Introductory remarks. 6.2. Action of fundamental shift operators. 6.3. Digraph interpretation. 6.4. Algebra of shift operators. 6.5. Hilbert space and [symbol]-polynomials. 6.6. Shift operator polynomials. 6.7. Kronecker product reduction. 6.8. More on explicit operator actions -- 7. The [symbol]-polynomials: structure. 7.1. The [symbol] matrices. 7.2. Reduction of [symbol]. 7.3. Binary tree structure: [symbol]-coefficients -- 8. The general linear and unitary groups. 8.1. Background and review. 8.2. GL(n, [symbol]) and its unitary subgroup U(n). 8.3. Commuting Hermitian observables. 8.4. Differential operator actions. 8.5. Eigenvalues of the Gelfand invariants -- 9. Tensor operator theory. 9.1. Introduction. 9.2. Unit tensor operators. 9.3. Canonical tensor operators. 9.4. Properties of reduced matrix elements. 9.5. The unitary group U(3). 9.6. The U(3) characteristic null spaces. 9.7. The U(3) : U(2) unit projective operators.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">10. Compendium A. Basic algebraic objects. 10.1. Groups. 10.2. Rings. 10.3. Abstract Hilbert spaces. 10.4. Properties of matrices. 10.5. Tensor product spaces. 10.6. Vector spaces of polynomials. 10.7. Group representations -- 11. Compendium B: combinatorial objects. 11.1. Partitions and tableaux. 11.2. Young frames and tableaux. 11.3. Gelfand-Tsetlin patterns. 11.4. Generating functions and relations. 11.5. Multivariable special functions. 11.6. Symmetric functions. 11.7. Sylvester's identity. 11.8. Derivation of Weyl's dimension formula. 11.9. Other topics.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of recoupling matrices for quantum angular momentum is developed. For the general unitary group, polynomial forms in many variables called matrix Schur functions have the remarkable property of giving all irreducible representations of the general unitary group and are the basic objects of study. The structure of these irreducible polynomials and the reduction of their Kronecker product is developed in detail, as is the theory of tensor operators.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Combinatorial analysis.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85028802</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Eightfold way (Nuclear physics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85041403</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse combinatoire.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Symétrie unitaire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Combinatorics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combinatorial analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Eightfold way (Nuclear physics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Louck, James D.</subfield><subfield code="t">Unitary symmetry and combinatorics.</subfield><subfield code="d">Singapore ; Hackensack, NJ : World Scientific, ©2008</subfield><subfield code="z">9789812814722</subfield><subfield code="w">(DLC) 2008300334</subfield><subfield code="w">(OCoLC)273893634</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521211</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24685788</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10688197</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">521211</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9975191</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn820944537 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:05Z |
institution | BVB |
isbn | 9789812814739 9812814736 |
language | English |
oclc_num | 820944537 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxi, 619 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific Pub. Co., |
record_format | marc |
spelling | Louck, James D. Unitary symmetry and combinatorics / James D. Louck. Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2008. 1 online resource (xxi, 619 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 597-609) and index. 1. Quantum angular momentum. 1.1. Background and viewpoint. 1.2 Abstract angular momentum. 1.3. SO(3, [symbol]) and SU(2) solid harmonics. 1.4. Combinatorial features. 1.5. Kronecker product of solid harmonics. 1.6. SU(n) solid harmonics. 1.7. Generalization to U(2) -- 2. Composite systems. 2.1. General setting. 2.2. Binary coupling theory. 2.3. Classification of recoupling matrices -- 3. Graphs and adjacency diagrams. 3.1. Binary trees and trivalent trees. 3.2. Nonisomorphic trivalent trees. 3.3. Cubic graphs and trivalent trees. 3.4. Cubic graphs -- 4. Generating functions. 4.1. Pfaffians and double Pfaffians. 4.2. Skew-symmetric matrix. 4.3. Triangle monomials. 4.4. Coupled wave functions. 4.5. Recoupling coefficients. 4.6. Special cases. 4.7. Concluding remarks -- 5. The [symbol]-polynomials: form. 5.1. Overview. 5.2. Defining relations. 5.3. Restriction to fewer variables. 5.4. Vector space aspects. 5.5. Fundamental structural relations. 6. Operator actions in Hilbert space. 6.1. Introductory remarks. 6.2. Action of fundamental shift operators. 6.3. Digraph interpretation. 6.4. Algebra of shift operators. 6.5. Hilbert space and [symbol]-polynomials. 6.6. Shift operator polynomials. 6.7. Kronecker product reduction. 6.8. More on explicit operator actions -- 7. The [symbol]-polynomials: structure. 7.1. The [symbol] matrices. 7.2. Reduction of [symbol]. 7.3. Binary tree structure: [symbol]-coefficients -- 8. The general linear and unitary groups. 8.1. Background and review. 8.2. GL(n, [symbol]) and its unitary subgroup U(n). 8.3. Commuting Hermitian observables. 8.4. Differential operator actions. 8.5. Eigenvalues of the Gelfand invariants -- 9. Tensor operator theory. 9.1. Introduction. 9.2. Unit tensor operators. 9.3. Canonical tensor operators. 9.4. Properties of reduced matrix elements. 9.5. The unitary group U(3). 9.6. The U(3) characteristic null spaces. 9.7. The U(3) : U(2) unit projective operators. 10. Compendium A. Basic algebraic objects. 10.1. Groups. 10.2. Rings. 10.3. Abstract Hilbert spaces. 10.4. Properties of matrices. 10.5. Tensor product spaces. 10.6. Vector spaces of polynomials. 10.7. Group representations -- 11. Compendium B: combinatorial objects. 11.1. Partitions and tableaux. 11.2. Young frames and tableaux. 11.3. Gelfand-Tsetlin patterns. 11.4. Generating functions and relations. 11.5. Multivariable special functions. 11.6. Symmetric functions. 11.7. Sylvester's identity. 11.8. Derivation of Weyl's dimension formula. 11.9. Other topics. This monograph integrates unitary symmetry and combinatorics, showing in great detail how the coupling of angular momenta in quantum mechanics is related to binary trees, trivalent trees, cubic graphs, MacMahon's master theorem, and other basic combinatorial concepts. A comprehensive theory of recoupling matrices for quantum angular momentum is developed. For the general unitary group, polynomial forms in many variables called matrix Schur functions have the remarkable property of giving all irreducible representations of the general unitary group and are the basic objects of study. The structure of these irreducible polynomials and the reduction of their Kronecker product is developed in detail, as is the theory of tensor operators. Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Eightfold way (Nuclear physics) http://id.loc.gov/authorities/subjects/sh85041403 Analyse combinatoire. Symétrie unitaire. MATHEMATICS Combinatorics. bisacsh Combinatorial analysis fast Eightfold way (Nuclear physics) fast Print version: Louck, James D. Unitary symmetry and combinatorics. Singapore ; Hackensack, NJ : World Scientific, ©2008 9789812814722 (DLC) 2008300334 (OCoLC)273893634 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521211 Volltext |
spellingShingle | Louck, James D. Unitary symmetry and combinatorics / 1. Quantum angular momentum. 1.1. Background and viewpoint. 1.2 Abstract angular momentum. 1.3. SO(3, [symbol]) and SU(2) solid harmonics. 1.4. Combinatorial features. 1.5. Kronecker product of solid harmonics. 1.6. SU(n) solid harmonics. 1.7. Generalization to U(2) -- 2. Composite systems. 2.1. General setting. 2.2. Binary coupling theory. 2.3. Classification of recoupling matrices -- 3. Graphs and adjacency diagrams. 3.1. Binary trees and trivalent trees. 3.2. Nonisomorphic trivalent trees. 3.3. Cubic graphs and trivalent trees. 3.4. Cubic graphs -- 4. Generating functions. 4.1. Pfaffians and double Pfaffians. 4.2. Skew-symmetric matrix. 4.3. Triangle monomials. 4.4. Coupled wave functions. 4.5. Recoupling coefficients. 4.6. Special cases. 4.7. Concluding remarks -- 5. The [symbol]-polynomials: form. 5.1. Overview. 5.2. Defining relations. 5.3. Restriction to fewer variables. 5.4. Vector space aspects. 5.5. Fundamental structural relations. 6. Operator actions in Hilbert space. 6.1. Introductory remarks. 6.2. Action of fundamental shift operators. 6.3. Digraph interpretation. 6.4. Algebra of shift operators. 6.5. Hilbert space and [symbol]-polynomials. 6.6. Shift operator polynomials. 6.7. Kronecker product reduction. 6.8. More on explicit operator actions -- 7. The [symbol]-polynomials: structure. 7.1. The [symbol] matrices. 7.2. Reduction of [symbol]. 7.3. Binary tree structure: [symbol]-coefficients -- 8. The general linear and unitary groups. 8.1. Background and review. 8.2. GL(n, [symbol]) and its unitary subgroup U(n). 8.3. Commuting Hermitian observables. 8.4. Differential operator actions. 8.5. Eigenvalues of the Gelfand invariants -- 9. Tensor operator theory. 9.1. Introduction. 9.2. Unit tensor operators. 9.3. Canonical tensor operators. 9.4. Properties of reduced matrix elements. 9.5. The unitary group U(3). 9.6. The U(3) characteristic null spaces. 9.7. The U(3) : U(2) unit projective operators. 10. Compendium A. Basic algebraic objects. 10.1. Groups. 10.2. Rings. 10.3. Abstract Hilbert spaces. 10.4. Properties of matrices. 10.5. Tensor product spaces. 10.6. Vector spaces of polynomials. 10.7. Group representations -- 11. Compendium B: combinatorial objects. 11.1. Partitions and tableaux. 11.2. Young frames and tableaux. 11.3. Gelfand-Tsetlin patterns. 11.4. Generating functions and relations. 11.5. Multivariable special functions. 11.6. Symmetric functions. 11.7. Sylvester's identity. 11.8. Derivation of Weyl's dimension formula. 11.9. Other topics. Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Eightfold way (Nuclear physics) http://id.loc.gov/authorities/subjects/sh85041403 Analyse combinatoire. Symétrie unitaire. MATHEMATICS Combinatorics. bisacsh Combinatorial analysis fast Eightfold way (Nuclear physics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85028802 http://id.loc.gov/authorities/subjects/sh85041403 |
title | Unitary symmetry and combinatorics / |
title_auth | Unitary symmetry and combinatorics / |
title_exact_search | Unitary symmetry and combinatorics / |
title_full | Unitary symmetry and combinatorics / James D. Louck. |
title_fullStr | Unitary symmetry and combinatorics / James D. Louck. |
title_full_unstemmed | Unitary symmetry and combinatorics / James D. Louck. |
title_short | Unitary symmetry and combinatorics / |
title_sort | unitary symmetry and combinatorics |
topic | Combinatorial analysis. http://id.loc.gov/authorities/subjects/sh85028802 Eightfold way (Nuclear physics) http://id.loc.gov/authorities/subjects/sh85041403 Analyse combinatoire. Symétrie unitaire. MATHEMATICS Combinatorics. bisacsh Combinatorial analysis fast Eightfold way (Nuclear physics) fast |
topic_facet | Combinatorial analysis. Eightfold way (Nuclear physics) Analyse combinatoire. Symétrie unitaire. MATHEMATICS Combinatorics. Combinatorial analysis |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=521211 |
work_keys_str_mv | AT louckjamesd unitarysymmetryandcombinatorics |