Lectures on algebra.: Volume I /
This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling. The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel, Lectu...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack, N.J. :
World Scientific,
©2006.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling. The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel, Lectures on Algebra II, will serve as a textbook for a linear algebra course. The author's fondness for algebraic geometry shows up in both volumes, and his recent preoccupation with the applications of group theory to the calculation of Galois groups is evident in the second volume which contains more. |
Beschreibung: | Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises. |
Beschreibung: | 1 online resource |
Bibliographie: | Includes bibliographical references (pages 689-690) and index. |
ISBN: | 9812773444 9789812773449 1281924768 9781281924766 9786611924768 6611924760 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn820942685 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 080929s2006 si a ob 001 0 eng d | ||
010 | |z 2006299454 | ||
040 | |a LGG |b eng |e pn |c LGG |d OCLCO |d N$T |d OCLCF |d YDXCP |d OCLCQ |d COCUF |d U3W |d OCLCQ |d VTS |d INT |d AU@ |d OCLCQ |d STF |d OCLCQ |d M8D |d OCLCO |d OCLCQ |d QGK |d OCLCO |d OCLCL | ||
019 | |a 1086514365 |a 1259073761 | ||
020 | |a 9812773444 |q (electronic bk.) | ||
020 | |a 9789812773449 |q (electronic bk.) | ||
020 | |a 1281924768 | ||
020 | |a 9781281924766 | ||
020 | |a 9786611924768 | ||
020 | |a 6611924760 | ||
035 | |a (OCoLC)820942685 |z (OCoLC)1086514365 |z (OCoLC)1259073761 | ||
050 | 4 | |a QA154.3 | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Abhyankar, Shreeram Shankar. | |
245 | 1 | 0 | |a Lectures on algebra. |n Volume I / |c S.S. Abhyankar. |
260 | |a Singapore ; |a Hackensack, N.J. : |b World Scientific, |c ©2006. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references (pages 689-690) and index. | ||
505 | 0 | |a Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note. | |
505 | 0 | |a Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings. | |
505 | 0 | |a Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem. | |
505 | 0 | |a Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups. | |
500 | |a Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises. | ||
520 | |a This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling. The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel, Lectures on Algebra II, will serve as a textbook for a linear algebra course. The author's fondness for algebraic geometry shows up in both volumes, and his recent preoccupation with the applications of group theory to the calculation of Galois groups is evident in the second volume which contains more. | ||
546 | |a English. | ||
650 | 0 | |a Algebra. |0 http://id.loc.gov/authorities/subjects/sh85003425 | |
650 | 0 | |a Algebra, Abstract. |0 http://id.loc.gov/authorities/subjects/sh85003428 | |
650 | 0 | |a Algebras, Linear. |0 http://id.loc.gov/authorities/subjects/sh85003441 | |
650 | 6 | |a Algèbre. | |
650 | 6 | |a Algèbre abstraite. | |
650 | 6 | |a Algèbre linéaire. | |
650 | 7 | |a algebra. |2 aat | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Algebra |2 fast | |
650 | 7 | |a Algebra, Abstract |2 fast | |
650 | 7 | |a Algebras, Linear |2 fast | |
758 | |i has work: |a Vol. 1 Lectures on algebra (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGd7Rr6qxFydW8dbpJfPBd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | |z 981-256-826-3 | ||
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514825 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 514825 | ||
938 | |a YBP Library Services |b YANK |n 9966095 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn820942685 |
---|---|
_version_ | 1816882216428371968 |
adam_text | |
any_adam_object | |
author | Abhyankar, Shreeram Shankar |
author_facet | Abhyankar, Shreeram Shankar |
author_role | |
author_sort | Abhyankar, Shreeram Shankar |
author_variant | s s a ss ssa |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA154 |
callnumber-raw | QA154.3 |
callnumber-search | QA154.3 |
callnumber-sort | QA 3154.3 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note. Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings. Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem. Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups. |
ctrlnum | (OCoLC)820942685 |
dewey-full | 512 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512 |
dewey-search | 512 |
dewey-sort | 3512 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06500cam a2200649Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn820942685</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">080929s2006 si a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 2006299454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">LGG</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">LGG</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">INT</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1086514365</subfield><subfield code="a">1259073761</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812773444</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812773449</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281924768</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281924766</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786611924768</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6611924760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)820942685</subfield><subfield code="z">(OCoLC)1086514365</subfield><subfield code="z">(OCoLC)1259073761</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA154.3</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Abhyankar, Shreeram Shankar.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on algebra.</subfield><subfield code="n">Volume I /</subfield><subfield code="c">S.S. Abhyankar.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore ;</subfield><subfield code="a">Hackensack, N.J. :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">©2006.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 689-690) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling. The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel, Lectures on Algebra II, will serve as a textbook for a linear algebra course. The author's fondness for algebraic geometry shows up in both volumes, and his recent preoccupation with the applications of group theory to the calculation of Galois groups is evident in the second volume which contains more.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebra.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003425</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebra, Abstract.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003428</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Algebras, Linear.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85003441</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre abstraite.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbre linéaire.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">algebra.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebra, Abstract</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algebras, Linear</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Vol. 1 Lectures on algebra (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGd7Rr6qxFydW8dbpJfPBd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">981-256-826-3</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514825</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">514825</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9966095</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn820942685 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:05Z |
institution | BVB |
isbn | 9812773444 9789812773449 1281924768 9781281924766 9786611924768 6611924760 |
language | English |
oclc_num | 820942685 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | World Scientific, |
record_format | marc |
spelling | Abhyankar, Shreeram Shankar. Lectures on algebra. Volume I / S.S. Abhyankar. Singapore ; Hackensack, N.J. : World Scientific, ©2006. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references (pages 689-690) and index. Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note. Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings. Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem. Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups. Lecture L6. Pause and refresh. 1. Summary of Lecture L1 on quadratic equations. 2. Summary of Lecture L2 on curves and surfaces. 3. Summary of Lecture L3 on tangents and polars. 4. Summary of Lecture L4 on varieties and models. 5. Summary of Lecture L5 on projective varieties. 6. Definitions and exercises. This book is a timely survey of much of the algebra developed during the last several centuries including its applications to algebraic geometry and its potential use in geometric modeling. The present volume makes an ideal textbook for an abstract algebra course, while the forthcoming sequel, Lectures on Algebra II, will serve as a textbook for a linear algebra course. The author's fondness for algebraic geometry shows up in both volumes, and his recent preoccupation with the applications of group theory to the calculation of Galois groups is evident in the second volume which contains more. English. Algebra. http://id.loc.gov/authorities/subjects/sh85003425 Algebra, Abstract. http://id.loc.gov/authorities/subjects/sh85003428 Algebras, Linear. http://id.loc.gov/authorities/subjects/sh85003441 Algèbre. Algèbre abstraite. Algèbre linéaire. algebra. aat MATHEMATICS Algebra Intermediate. bisacsh Algebra fast Algebra, Abstract fast Algebras, Linear fast has work: Vol. 1 Lectures on algebra (Text) https://id.oclc.org/worldcat/entity/E39PCGd7Rr6qxFydW8dbpJfPBd https://id.oclc.org/worldcat/ontology/hasWork 981-256-826-3 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514825 Volltext |
spellingShingle | Abhyankar, Shreeram Shankar Lectures on algebra. Lecture L1. Quadratic equations. 1. Word problems. 2. Sets and maps. 3. Groups and fields. 4. Rings and ideals. 5. Modules and vector spaces. 6. Polynomials and rational functions. 7. Euclidean domains and principal ideal domains. 8. Root fields and splitting fields. 9. Advice to the reader. 10. Definitions and remarks. 11. Examples and exercises. 12. Notes. 13. Concluding note -- Lecture L2. Curves and surfaces. 1. Multivariable word problems. 2. Power series and meromorphic series. 3. Valuations. 4. Advice to the reader. 5. Zorn's Lemma and well ordering. 6. Utilitarian summary. 7. Definitions and exercises. 8. Notes. 9. Concluding note. Lecture L3. Tangents and polars. 1. Simple groups. 2. Quadrics. 3. Hypersurfaces. 4. Homogeneous coordinates. 5. Singularities. 6. Hensel's Lemma and Newton's theorem. 7. Integral dependence. 8. Unique factorization domains. 9. Remarks. 10. Advice to the reader. 11. Hensel and Weierstrass. 12. Definitions and exercises. 13. Notes. 14. Concluding note -- Lecture L4. Varieties and models. 1. Resultants and discriminants. 2. Varieties. 3. Noetherian rings. 4. Advice to the reader. 5. Ideals and modules. 6. Primary decomposition. 7. Localization. 8. Affine varieties. 9. Models. 10. Examples and exercises. 11. Problems. 12. Remarks. 13. Definitions and exercises. 14. Notes. 15. Concluding note -- Lecture L5. Projective varieties. 1. Direct sums of modules. 2. Grades rings and homogeneous ideals. 3. Ideal theory in graded rings. 4. Advice to the reader. 5. More about ideals and modules -- Q1. Nilpotents and zerodivisors in Noetherian rings. Q2. Faithful modules and Noetherian conditions -- Q3. Jacobson radical, Zariski ring, and Nakayama Lemma -- Q4. Krull intersection theorem and Artin-Rees Lemma -- Q5. Nagata's principle of idealization -- Q6. Cohen's and Eakin's Noetherian theorems -- Q7. Principal ideal theorems -- Q8. Relative independence and analytic independence -- Q9. Going up and going down theorems -- Q10. Normalization theorem and regular polynomials -- Q11. Nilradical, Jacobson Spectrum, and Jacobson Ring -- Q12. Catenarian Rings and dimension formula -- Q13. Associated graded rings and leading ideals -- Q14. Completely normal domains -- Q15. Regular sequences and Cohen-Macaulay rings -- Q16. Complete intersections and Gorenstein Rings -- Q17. Projective resolutions of finite modules -- Q18. Direct sums of algebras, reduced rings, and PIRs -- Q19. Invertible ideals, conditions for normality, and DVRs -- Q20. Dedekind domains and Chinese remainder theorem. Q21. Real ranks of valuations and segment completions -- Q22. Specializations and compositions of valuations -- Q23. UFD property of regular local domains -- Q24. Graded modules and Hilbert polynomials -- Q25. Hilbert polynomial of a hypersurfaces -- Q26. Homogeneous submodules of graded modules -- Q27. Homogeneous normalization -- Q28. Alternating sum of lengths -- Q29. Linear disjointness and intersection of varieties -- Q30. Syzygies and homogeneous resolutions -- Q31. Projective modules over polynomial rings -- Q32. Separable extensions and primitive elements -- Q33. Restricted domains and projective normalization -- Q34. Basic projective algebraic geometry -- Q. 35. Simplifying singularities by blowups. Algebra. http://id.loc.gov/authorities/subjects/sh85003425 Algebra, Abstract. http://id.loc.gov/authorities/subjects/sh85003428 Algebras, Linear. http://id.loc.gov/authorities/subjects/sh85003441 Algèbre. Algèbre abstraite. Algèbre linéaire. algebra. aat MATHEMATICS Algebra Intermediate. bisacsh Algebra fast Algebra, Abstract fast Algebras, Linear fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85003425 http://id.loc.gov/authorities/subjects/sh85003428 http://id.loc.gov/authorities/subjects/sh85003441 |
title | Lectures on algebra. |
title_auth | Lectures on algebra. |
title_exact_search | Lectures on algebra. |
title_full | Lectures on algebra. Volume I / S.S. Abhyankar. |
title_fullStr | Lectures on algebra. Volume I / S.S. Abhyankar. |
title_full_unstemmed | Lectures on algebra. Volume I / S.S. Abhyankar. |
title_short | Lectures on algebra. |
title_sort | lectures on algebra |
topic | Algebra. http://id.loc.gov/authorities/subjects/sh85003425 Algebra, Abstract. http://id.loc.gov/authorities/subjects/sh85003428 Algebras, Linear. http://id.loc.gov/authorities/subjects/sh85003441 Algèbre. Algèbre abstraite. Algèbre linéaire. algebra. aat MATHEMATICS Algebra Intermediate. bisacsh Algebra fast Algebra, Abstract fast Algebras, Linear fast |
topic_facet | Algebra. Algebra, Abstract. Algebras, Linear. Algèbre. Algèbre abstraite. Algèbre linéaire. algebra. MATHEMATICS Algebra Intermediate. Algebra Algebra, Abstract Algebras, Linear |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=514825 |
work_keys_str_mv | AT abhyankarshreeramshankar lecturesonalgebravolumei |