Transformation groups :: proceedings of the conference in the University of Newcastle upon Tyne, August 1976 /
The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the papers submitted at the conference on transformati...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1977.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
26. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the papers submitted at the conference on transformation groups held at the University of Newcastle upon Tyne in August 1976. |
Beschreibung: | 1 online resource (vii, 306 pages) : illustrations |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9781139106726 1139106724 9781139126670 1139126679 1139113844 9781139113847 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn819326946 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121126s1977 enka ob 100 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d E7B |d N$T |d OCLCF |d OCLCO |d OCLCA |d COO |d OCLCO |d YDXCP |d OCL |d OCLCQ |d AGLDB |d UAB |d OCLCQ |d VTS |d REC |d STF |d AU@ |d OCLCO |d M8D |d OCLCQ |d OCL |d INARC |d AJS |d OCLCO |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO | ||
019 | |a 787852292 |a 837352276 | ||
020 | |a 9781139106726 |q (electronic bk.) | ||
020 | |a 1139106724 |q (electronic bk.) | ||
020 | |a 9781139126670 |q (electronic bk.) | ||
020 | |a 1139126679 |q (electronic bk.) | ||
020 | |a 1139113844 | ||
020 | |a 9781139113847 | ||
020 | |z 0521215090 | ||
020 | |z 0521215099 | ||
020 | |z 9780521215091 | ||
020 | |z 0521210509 | ||
020 | |z 9781139113847 | ||
035 | |a (OCoLC)819326946 |z (OCoLC)787852292 |z (OCoLC)837352276 | ||
050 | 4 | |a QA387 |b .T7 1977eb | |
072 | 7 | |a MAT |x 002050 |2 bisacsh | |
082 | 7 | |a 512/.55 |2 22 | |
084 | |a SD 1976 |2 rvk | ||
084 | |a SI 320 |2 rvk | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Transformation groups : |b proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / |c edited by Czes Kosniowski. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1977. | ||
300 | |a 1 online resource (vii, 306 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 26 | |
504 | |a Includes bibliographical references. | ||
588 | 0 | |a Print version record. | |
520 | |a The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the papers submitted at the conference on transformation groups held at the University of Newcastle upon Tyne in August 1976. | ||
505 | 0 | |a Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; CONTENTS; PREFACE; ACKNOWLEDGEMENTS; PART ONE; GENERATORS AND RELATIONS FOR GROUPS OF HOMEOMORPHISMS; I. RESULTS; II SURJECTIVITY OF q; III THE SET Y; IV PROOF OF THEOREMS 1 AND 2; V PROOF OF THEOREM 3; REFERENCES; AFFINE EMBEDDINGS OF REAL LIE GROUPS; INTRODUCTION; 1. SOME PRELIMINARIES; 2. AFFINE ACTIONS OF REAL LIE GROUPS IN EUCLIDIAN MANIFOLD; 3. THE VANISHING THEOREM FOR COHOMOLOGY CLASSES; 4. AFFINE IMMERSIONS AND AFFINE EMBEDDINGS OF REAL LIE GROUPS; 5. KOSZUL-VINBERG ALGEBRAS WITH RIGHT UNITS; REFERENCES | |
505 | 8 | |a EQUIVARIANT DIFFERENTIAL OPERATORS OF A LIE GROUP*1. INTRODUCTION; 2. THE ACTIONS OF G; 3. INVARIANT FUNCTIONS FOR TRANSITIVE ACTION; 4. DIFFERENTIAL INVARIANTS; BIBLIOGRAPHY; EQUIVARIANT REGULAR NEIGHBOURHOODS; 1. INTRODUCTION; 2. SOME DEFINITIONS; 3. AN EXISTENCE THEOREM FOR G-REGULAR NEIGHBOURHOODS; 4. LOCAL CONTRACTIBILITY OF SPACES OF GROUP ACTIONS; 5. SEMIFREE ACTIONS ON SPHERES WITH TWO FIXED POINTS; REFERENCES; CHARACTERISTIC NUMBERS AND EQUIVARIANT SPIN COBORDISM; 1. INTRODUCTION; 2. PROOF OF MAlN THEOREM; 3. CONSEQUENCES; REFERENCES; EQUIVARIANT K-THEORY AND CYCLIC SUBGROUPS | |
505 | 8 | |a 1. FAMILIES OF SUBGROUPS AND EQUIVARIANT COHOMOLOGY2. TOPOLOGIES IN THE REPRESENTATION RING; 3. COMPLETION OF EQUIVARIANT K-THEORY; 4. THE FAMILY OF CYCLIC SUBGROUPS; 5. COMPLETENESS AND ORBIT STRUCTURE; REFERENCES; zz/p MANIFOLDS WITH LOW DIMENSIONAL FIXED POINT SET; 1. INTRODUCTION; 2. THE GENERATORS; 3. FIXED POINT SETS AND?.; 4. ISOLATED FIXED POINTS; 5. INTEGRALITY CONDITIONS; 6. PROOF OF THE MAIN RESULT; 7. FINAL REMARK; REFERENCES; GAPS IN THE RELATIVE DEGREE OF SYMMETRY; 1. INTRODUCTION; 2. PRELIMINARIES; 3. GAPS IN FN (M) | |
505 | 8 | |a 4. GAPS IN THE DIMENSIONS OF THE ISOMETRY GROUPS OF THE RIEMANNIAN MANIFOLDS. References; CHARACTERS DO NOT LIE; 1. PROOF OF THEOREM 4.; 2. THEOREM 4 IMPLIES THEOREM 3.; 3. THEOREM 3 IMPLIES THEOREM 1.; 4. THEOREM 1 IMPLIES COROLLARY 2; REFERENCES; ACTIONS OF Z/2n ON S3; ABSTRACT; 1. INTRODUCTION; 2. HOMEOMORPHISMS WITH ALMOST TAME FIXED POINT SET.; 3. FREE ACTIONS OF Z/2n ON S3.; REFERENCES; PERIODIC HOMEOMORPHISMS ON NON-COMPACT 3 MANIFOLDS; ABSTRACT; 1. INTRODUCTION; 2. FIXED POINT FREE INVOLUTIONS ON R1 X T2.; 3. FIXED POINT FREE INVOLUTIONS ON R2 X S1. | |
505 | 8 | |a 4. FIXED POINT FREE INVOLUTIONS OF R1 X S2. REFERENCES; EQUIVARIANT FUNCTION SPACES AND EQUIVARIANT STABLE HOMOTOPY THEORY; 1. THE UNREDUCED SUSPENSION; 2. ALGEBRAIC OPERATIONS IN FG (SV,8); 3. COMPARISON OF ALGEBRAIC STRUCTURES; 4. FINAL REMARKS; REFERENCES; A PROPERTY OF A CHARACTERISTIC CLASS OF AN ORBIT FOLIATION; INTRODUCTION; 1. PRELIMINARIES; 2. CONNECTIONS IN VECTOR BUNDLES; 3. PROOF OF MAIN THEOREMS; REFERENCES; ORBIT STRUCTURE FOR LIE GROUP ACTIONS ON HIGHER COHOMOLOGY PROJECTIVE SPACES; INTRODUCTION; 1. STRUCTURE THEOREMS IN EQUIVARIANT COHOWOLOGY | |
650 | 0 | |a Transformation groups |v Congresses. | |
650 | 0 | |a Topological transformation groups |v Congresses. | |
650 | 0 | |a Topological transformation groups |x Congresses. | |
650 | 6 | |a Groupes de transformations |v Congrès. | |
650 | 6 | |a Groupes topologiques de transformation |x Congrès. | |
650 | 6 | |a Groupes topologiques de transformation |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Linear. |2 bisacsh | |
650 | 7 | |a Topological transformation groups |2 fast | |
650 | 7 | |a Transformation groups |2 fast | |
650 | 7 | |a Transformationsgruppe |2 gnd |0 http://d-nb.info/gnd/4127386-2 | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
655 | 7 | |a Kongress. |2 swd | |
700 | 1 | |a Kosniowski, Czes. | |
776 | 0 | 8 | |i Print version: |t Transformation groups. |d Cambridge [Eng.] ; New York : Cambridge University Press, 1977 |z 0521215099 |w (DLC) 77374855 |w (OCoLC)3629882 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 26. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399281 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10546254 | ||
938 | |a EBSCOhost |b EBSC |n 399281 | ||
938 | |a Internet Archive |b INAR |n transformationgr0000unse | ||
938 | |a YBP Library Services |b YANK |n 7499513 | ||
938 | |a YBP Library Services |b YANK |n 7580853 | ||
938 | |a YBP Library Services |b YANK |n 10410152 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn819326946 |
---|---|
_version_ | 1816882215594754048 |
adam_text | |
any_adam_object | |
author2 | Kosniowski, Czes |
author2_role | |
author2_variant | c k ck |
author_facet | Kosniowski, Czes |
author_sort | Kosniowski, Czes |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 .T7 1977eb |
callnumber-search | QA387 .T7 1977eb |
callnumber-sort | QA 3387 T7 41977EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SD 1976 SI 320 |
collection | ZDB-4-EBA |
contents | Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; CONTENTS; PREFACE; ACKNOWLEDGEMENTS; PART ONE; GENERATORS AND RELATIONS FOR GROUPS OF HOMEOMORPHISMS; I. RESULTS; II SURJECTIVITY OF q; III THE SET Y; IV PROOF OF THEOREMS 1 AND 2; V PROOF OF THEOREM 3; REFERENCES; AFFINE EMBEDDINGS OF REAL LIE GROUPS; INTRODUCTION; 1. SOME PRELIMINARIES; 2. AFFINE ACTIONS OF REAL LIE GROUPS IN EUCLIDIAN MANIFOLD; 3. THE VANISHING THEOREM FOR COHOMOLOGY CLASSES; 4. AFFINE IMMERSIONS AND AFFINE EMBEDDINGS OF REAL LIE GROUPS; 5. KOSZUL-VINBERG ALGEBRAS WITH RIGHT UNITS; REFERENCES EQUIVARIANT DIFFERENTIAL OPERATORS OF A LIE GROUP*1. INTRODUCTION; 2. THE ACTIONS OF G; 3. INVARIANT FUNCTIONS FOR TRANSITIVE ACTION; 4. DIFFERENTIAL INVARIANTS; BIBLIOGRAPHY; EQUIVARIANT REGULAR NEIGHBOURHOODS; 1. INTRODUCTION; 2. SOME DEFINITIONS; 3. AN EXISTENCE THEOREM FOR G-REGULAR NEIGHBOURHOODS; 4. LOCAL CONTRACTIBILITY OF SPACES OF GROUP ACTIONS; 5. SEMIFREE ACTIONS ON SPHERES WITH TWO FIXED POINTS; REFERENCES; CHARACTERISTIC NUMBERS AND EQUIVARIANT SPIN COBORDISM; 1. INTRODUCTION; 2. PROOF OF MAlN THEOREM; 3. CONSEQUENCES; REFERENCES; EQUIVARIANT K-THEORY AND CYCLIC SUBGROUPS 1. FAMILIES OF SUBGROUPS AND EQUIVARIANT COHOMOLOGY2. TOPOLOGIES IN THE REPRESENTATION RING; 3. COMPLETION OF EQUIVARIANT K-THEORY; 4. THE FAMILY OF CYCLIC SUBGROUPS; 5. COMPLETENESS AND ORBIT STRUCTURE; REFERENCES; zz/p MANIFOLDS WITH LOW DIMENSIONAL FIXED POINT SET; 1. INTRODUCTION; 2. THE GENERATORS; 3. FIXED POINT SETS AND?.; 4. ISOLATED FIXED POINTS; 5. INTEGRALITY CONDITIONS; 6. PROOF OF THE MAIN RESULT; 7. FINAL REMARK; REFERENCES; GAPS IN THE RELATIVE DEGREE OF SYMMETRY; 1. INTRODUCTION; 2. PRELIMINARIES; 3. GAPS IN FN (M) 4. GAPS IN THE DIMENSIONS OF THE ISOMETRY GROUPS OF THE RIEMANNIAN MANIFOLDS. References; CHARACTERS DO NOT LIE; 1. PROOF OF THEOREM 4.; 2. THEOREM 4 IMPLIES THEOREM 3.; 3. THEOREM 3 IMPLIES THEOREM 1.; 4. THEOREM 1 IMPLIES COROLLARY 2; REFERENCES; ACTIONS OF Z/2n ON S3; ABSTRACT; 1. INTRODUCTION; 2. HOMEOMORPHISMS WITH ALMOST TAME FIXED POINT SET.; 3. FREE ACTIONS OF Z/2n ON S3.; REFERENCES; PERIODIC HOMEOMORPHISMS ON NON-COMPACT 3 MANIFOLDS; ABSTRACT; 1. INTRODUCTION; 2. FIXED POINT FREE INVOLUTIONS ON R1 X T2.; 3. FIXED POINT FREE INVOLUTIONS ON R2 X S1. 4. FIXED POINT FREE INVOLUTIONS OF R1 X S2. REFERENCES; EQUIVARIANT FUNCTION SPACES AND EQUIVARIANT STABLE HOMOTOPY THEORY; 1. THE UNREDUCED SUSPENSION; 2. ALGEBRAIC OPERATIONS IN FG (SV,8); 3. COMPARISON OF ALGEBRAIC STRUCTURES; 4. FINAL REMARKS; REFERENCES; A PROPERTY OF A CHARACTERISTIC CLASS OF AN ORBIT FOLIATION; INTRODUCTION; 1. PRELIMINARIES; 2. CONNECTIONS IN VECTOR BUNDLES; 3. PROOF OF MAIN THEOREMS; REFERENCES; ORBIT STRUCTURE FOR LIE GROUP ACTIONS ON HIGHER COHOMOLOGY PROJECTIVE SPACES; INTRODUCTION; 1. STRUCTURE THEOREMS IN EQUIVARIANT COHOWOLOGY |
ctrlnum | (OCoLC)819326946 |
dewey-full | 512/.55 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.55 |
dewey-search | 512/.55 |
dewey-sort | 3512 255 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06421cam a2200793 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn819326946</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121126s1977 enka ob 100 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCA</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">INARC</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">787852292</subfield><subfield code="a">837352276</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139106726</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139106724</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139126670</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139126679</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139113844</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139113847</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521215090</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521215099</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521215091</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521210509</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781139113847</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)819326946</subfield><subfield code="z">(OCoLC)787852292</subfield><subfield code="z">(OCoLC)837352276</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA387</subfield><subfield code="b">.T7 1977eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002050</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512/.55</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SD 1976</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Transformation groups :</subfield><subfield code="b">proceedings of the conference in the University of Newcastle upon Tyne, August 1976 /</subfield><subfield code="c">edited by Czes Kosniowski.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1977.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 306 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">26</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the papers submitted at the conference on transformation groups held at the University of Newcastle upon Tyne in August 1976.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; CONTENTS; PREFACE; ACKNOWLEDGEMENTS; PART ONE; GENERATORS AND RELATIONS FOR GROUPS OF HOMEOMORPHISMS; I. RESULTS; II SURJECTIVITY OF q; III THE SET Y; IV PROOF OF THEOREMS 1 AND 2; V PROOF OF THEOREM 3; REFERENCES; AFFINE EMBEDDINGS OF REAL LIE GROUPS; INTRODUCTION; 1. SOME PRELIMINARIES; 2. AFFINE ACTIONS OF REAL LIE GROUPS IN EUCLIDIAN MANIFOLD; 3. THE VANISHING THEOREM FOR COHOMOLOGY CLASSES; 4. AFFINE IMMERSIONS AND AFFINE EMBEDDINGS OF REAL LIE GROUPS; 5. KOSZUL-VINBERG ALGEBRAS WITH RIGHT UNITS; REFERENCES</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">EQUIVARIANT DIFFERENTIAL OPERATORS OF A LIE GROUP*1. INTRODUCTION; 2. THE ACTIONS OF G; 3. INVARIANT FUNCTIONS FOR TRANSITIVE ACTION; 4. DIFFERENTIAL INVARIANTS; BIBLIOGRAPHY; EQUIVARIANT REGULAR NEIGHBOURHOODS; 1. INTRODUCTION; 2. SOME DEFINITIONS; 3. AN EXISTENCE THEOREM FOR G-REGULAR NEIGHBOURHOODS; 4. LOCAL CONTRACTIBILITY OF SPACES OF GROUP ACTIONS; 5. SEMIFREE ACTIONS ON SPHERES WITH TWO FIXED POINTS; REFERENCES; CHARACTERISTIC NUMBERS AND EQUIVARIANT SPIN COBORDISM; 1. INTRODUCTION; 2. PROOF OF MAlN THEOREM; 3. CONSEQUENCES; REFERENCES; EQUIVARIANT K-THEORY AND CYCLIC SUBGROUPS</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. FAMILIES OF SUBGROUPS AND EQUIVARIANT COHOMOLOGY2. TOPOLOGIES IN THE REPRESENTATION RING; 3. COMPLETION OF EQUIVARIANT K-THEORY; 4. THE FAMILY OF CYCLIC SUBGROUPS; 5. COMPLETENESS AND ORBIT STRUCTURE; REFERENCES; zz/p MANIFOLDS WITH LOW DIMENSIONAL FIXED POINT SET; 1. INTRODUCTION; 2. THE GENERATORS; 3. FIXED POINT SETS AND?.; 4. ISOLATED FIXED POINTS; 5. INTEGRALITY CONDITIONS; 6. PROOF OF THE MAIN RESULT; 7. FINAL REMARK; REFERENCES; GAPS IN THE RELATIVE DEGREE OF SYMMETRY; 1. INTRODUCTION; 2. PRELIMINARIES; 3. GAPS IN FN (M)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. GAPS IN THE DIMENSIONS OF THE ISOMETRY GROUPS OF THE RIEMANNIAN MANIFOLDS. References; CHARACTERS DO NOT LIE; 1. PROOF OF THEOREM 4.; 2. THEOREM 4 IMPLIES THEOREM 3.; 3. THEOREM 3 IMPLIES THEOREM 1.; 4. THEOREM 1 IMPLIES COROLLARY 2; REFERENCES; ACTIONS OF Z/2n ON S3; ABSTRACT; 1. INTRODUCTION; 2. HOMEOMORPHISMS WITH ALMOST TAME FIXED POINT SET.; 3. FREE ACTIONS OF Z/2n ON S3.; REFERENCES; PERIODIC HOMEOMORPHISMS ON NON-COMPACT 3 MANIFOLDS; ABSTRACT; 1. INTRODUCTION; 2. FIXED POINT FREE INVOLUTIONS ON R1 X T2.; 3. FIXED POINT FREE INVOLUTIONS ON R2 X S1.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. FIXED POINT FREE INVOLUTIONS OF R1 X S2. REFERENCES; EQUIVARIANT FUNCTION SPACES AND EQUIVARIANT STABLE HOMOTOPY THEORY; 1. THE UNREDUCED SUSPENSION; 2. ALGEBRAIC OPERATIONS IN FG (SV,8); 3. COMPARISON OF ALGEBRAIC STRUCTURES; 4. FINAL REMARKS; REFERENCES; A PROPERTY OF A CHARACTERISTIC CLASS OF AN ORBIT FOLIATION; INTRODUCTION; 1. PRELIMINARIES; 2. CONNECTIONS IN VECTOR BUNDLES; 3. PROOF OF MAIN THEOREMS; REFERENCES; ORBIT STRUCTURE FOR LIE GROUP ACTIONS ON HIGHER COHOMOLOGY PROJECTIVE SPACES; INTRODUCTION; 1. STRUCTURE THEOREMS IN EQUIVARIANT COHOWOLOGY</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Transformation groups</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological transformation groups</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Topological transformation groups</subfield><subfield code="x">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes de transformations</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes topologiques de transformation</subfield><subfield code="x">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Groupes topologiques de transformation</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Linear.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Topological transformation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transformation groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transformationsgruppe</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4127386-2</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Kongress.</subfield><subfield code="2">swd</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kosniowski, Czes.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Transformation groups.</subfield><subfield code="d">Cambridge [Eng.] ; New York : Cambridge University Press, 1977</subfield><subfield code="z">0521215099</subfield><subfield code="w">(DLC) 77374855</subfield><subfield code="w">(OCoLC)3629882</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">26.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399281</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10546254</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399281</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">transformationgr0000unse</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7499513</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7580853</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10410152</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast Kongress. swd |
genre_facet | Conference papers and proceedings Kongress. |
id | ZDB-4-EBA-ocn819326946 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:04Z |
institution | BVB |
isbn | 9781139106726 1139106724 9781139126670 1139126679 1139113844 9781139113847 |
language | English |
oclc_num | 819326946 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 306 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / edited by Czes Kosniowski. Cambridge ; New York : Cambridge University Press, 1977. 1 online resource (vii, 306 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 26 Includes bibliographical references. Print version record. The theory of transformation groups studies symmetries of various mathematical objects such as topological spaces, manifolds, polyhedra and function spaces. It is thus a central concept in many branches of mathematics. This volume contains 25 of the papers submitted at the conference on transformation groups held at the University of Newcastle upon Tyne in August 1976. Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; CONTENTS; PREFACE; ACKNOWLEDGEMENTS; PART ONE; GENERATORS AND RELATIONS FOR GROUPS OF HOMEOMORPHISMS; I. RESULTS; II SURJECTIVITY OF q; III THE SET Y; IV PROOF OF THEOREMS 1 AND 2; V PROOF OF THEOREM 3; REFERENCES; AFFINE EMBEDDINGS OF REAL LIE GROUPS; INTRODUCTION; 1. SOME PRELIMINARIES; 2. AFFINE ACTIONS OF REAL LIE GROUPS IN EUCLIDIAN MANIFOLD; 3. THE VANISHING THEOREM FOR COHOMOLOGY CLASSES; 4. AFFINE IMMERSIONS AND AFFINE EMBEDDINGS OF REAL LIE GROUPS; 5. KOSZUL-VINBERG ALGEBRAS WITH RIGHT UNITS; REFERENCES EQUIVARIANT DIFFERENTIAL OPERATORS OF A LIE GROUP*1. INTRODUCTION; 2. THE ACTIONS OF G; 3. INVARIANT FUNCTIONS FOR TRANSITIVE ACTION; 4. DIFFERENTIAL INVARIANTS; BIBLIOGRAPHY; EQUIVARIANT REGULAR NEIGHBOURHOODS; 1. INTRODUCTION; 2. SOME DEFINITIONS; 3. AN EXISTENCE THEOREM FOR G-REGULAR NEIGHBOURHOODS; 4. LOCAL CONTRACTIBILITY OF SPACES OF GROUP ACTIONS; 5. SEMIFREE ACTIONS ON SPHERES WITH TWO FIXED POINTS; REFERENCES; CHARACTERISTIC NUMBERS AND EQUIVARIANT SPIN COBORDISM; 1. INTRODUCTION; 2. PROOF OF MAlN THEOREM; 3. CONSEQUENCES; REFERENCES; EQUIVARIANT K-THEORY AND CYCLIC SUBGROUPS 1. FAMILIES OF SUBGROUPS AND EQUIVARIANT COHOMOLOGY2. TOPOLOGIES IN THE REPRESENTATION RING; 3. COMPLETION OF EQUIVARIANT K-THEORY; 4. THE FAMILY OF CYCLIC SUBGROUPS; 5. COMPLETENESS AND ORBIT STRUCTURE; REFERENCES; zz/p MANIFOLDS WITH LOW DIMENSIONAL FIXED POINT SET; 1. INTRODUCTION; 2. THE GENERATORS; 3. FIXED POINT SETS AND?.; 4. ISOLATED FIXED POINTS; 5. INTEGRALITY CONDITIONS; 6. PROOF OF THE MAIN RESULT; 7. FINAL REMARK; REFERENCES; GAPS IN THE RELATIVE DEGREE OF SYMMETRY; 1. INTRODUCTION; 2. PRELIMINARIES; 3. GAPS IN FN (M) 4. GAPS IN THE DIMENSIONS OF THE ISOMETRY GROUPS OF THE RIEMANNIAN MANIFOLDS. References; CHARACTERS DO NOT LIE; 1. PROOF OF THEOREM 4.; 2. THEOREM 4 IMPLIES THEOREM 3.; 3. THEOREM 3 IMPLIES THEOREM 1.; 4. THEOREM 1 IMPLIES COROLLARY 2; REFERENCES; ACTIONS OF Z/2n ON S3; ABSTRACT; 1. INTRODUCTION; 2. HOMEOMORPHISMS WITH ALMOST TAME FIXED POINT SET.; 3. FREE ACTIONS OF Z/2n ON S3.; REFERENCES; PERIODIC HOMEOMORPHISMS ON NON-COMPACT 3 MANIFOLDS; ABSTRACT; 1. INTRODUCTION; 2. FIXED POINT FREE INVOLUTIONS ON R1 X T2.; 3. FIXED POINT FREE INVOLUTIONS ON R2 X S1. 4. FIXED POINT FREE INVOLUTIONS OF R1 X S2. REFERENCES; EQUIVARIANT FUNCTION SPACES AND EQUIVARIANT STABLE HOMOTOPY THEORY; 1. THE UNREDUCED SUSPENSION; 2. ALGEBRAIC OPERATIONS IN FG (SV,8); 3. COMPARISON OF ALGEBRAIC STRUCTURES; 4. FINAL REMARKS; REFERENCES; A PROPERTY OF A CHARACTERISTIC CLASS OF AN ORBIT FOLIATION; INTRODUCTION; 1. PRELIMINARIES; 2. CONNECTIONS IN VECTOR BUNDLES; 3. PROOF OF MAIN THEOREMS; REFERENCES; ORBIT STRUCTURE FOR LIE GROUP ACTIONS ON HIGHER COHOMOLOGY PROJECTIVE SPACES; INTRODUCTION; 1. STRUCTURE THEOREMS IN EQUIVARIANT COHOWOLOGY Transformation groups Congresses. Topological transformation groups Congresses. Groupes de transformations Congrès. Groupes topologiques de transformation Congrès. MATHEMATICS Algebra Linear. bisacsh Topological transformation groups fast Transformation groups fast Transformationsgruppe gnd http://d-nb.info/gnd/4127386-2 Conference papers and proceedings fast Kongress. swd Kosniowski, Czes. Print version: Transformation groups. Cambridge [Eng.] ; New York : Cambridge University Press, 1977 0521215099 (DLC) 77374855 (OCoLC)3629882 London Mathematical Society lecture note series ; 26. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399281 Volltext |
spellingShingle | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / London Mathematical Society lecture note series ; Cover; LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES; Title; Copyright; CONTENTS; PREFACE; ACKNOWLEDGEMENTS; PART ONE; GENERATORS AND RELATIONS FOR GROUPS OF HOMEOMORPHISMS; I. RESULTS; II SURJECTIVITY OF q; III THE SET Y; IV PROOF OF THEOREMS 1 AND 2; V PROOF OF THEOREM 3; REFERENCES; AFFINE EMBEDDINGS OF REAL LIE GROUPS; INTRODUCTION; 1. SOME PRELIMINARIES; 2. AFFINE ACTIONS OF REAL LIE GROUPS IN EUCLIDIAN MANIFOLD; 3. THE VANISHING THEOREM FOR COHOMOLOGY CLASSES; 4. AFFINE IMMERSIONS AND AFFINE EMBEDDINGS OF REAL LIE GROUPS; 5. KOSZUL-VINBERG ALGEBRAS WITH RIGHT UNITS; REFERENCES EQUIVARIANT DIFFERENTIAL OPERATORS OF A LIE GROUP*1. INTRODUCTION; 2. THE ACTIONS OF G; 3. INVARIANT FUNCTIONS FOR TRANSITIVE ACTION; 4. DIFFERENTIAL INVARIANTS; BIBLIOGRAPHY; EQUIVARIANT REGULAR NEIGHBOURHOODS; 1. INTRODUCTION; 2. SOME DEFINITIONS; 3. AN EXISTENCE THEOREM FOR G-REGULAR NEIGHBOURHOODS; 4. LOCAL CONTRACTIBILITY OF SPACES OF GROUP ACTIONS; 5. SEMIFREE ACTIONS ON SPHERES WITH TWO FIXED POINTS; REFERENCES; CHARACTERISTIC NUMBERS AND EQUIVARIANT SPIN COBORDISM; 1. INTRODUCTION; 2. PROOF OF MAlN THEOREM; 3. CONSEQUENCES; REFERENCES; EQUIVARIANT K-THEORY AND CYCLIC SUBGROUPS 1. FAMILIES OF SUBGROUPS AND EQUIVARIANT COHOMOLOGY2. TOPOLOGIES IN THE REPRESENTATION RING; 3. COMPLETION OF EQUIVARIANT K-THEORY; 4. THE FAMILY OF CYCLIC SUBGROUPS; 5. COMPLETENESS AND ORBIT STRUCTURE; REFERENCES; zz/p MANIFOLDS WITH LOW DIMENSIONAL FIXED POINT SET; 1. INTRODUCTION; 2. THE GENERATORS; 3. FIXED POINT SETS AND?.; 4. ISOLATED FIXED POINTS; 5. INTEGRALITY CONDITIONS; 6. PROOF OF THE MAIN RESULT; 7. FINAL REMARK; REFERENCES; GAPS IN THE RELATIVE DEGREE OF SYMMETRY; 1. INTRODUCTION; 2. PRELIMINARIES; 3. GAPS IN FN (M) 4. GAPS IN THE DIMENSIONS OF THE ISOMETRY GROUPS OF THE RIEMANNIAN MANIFOLDS. References; CHARACTERS DO NOT LIE; 1. PROOF OF THEOREM 4.; 2. THEOREM 4 IMPLIES THEOREM 3.; 3. THEOREM 3 IMPLIES THEOREM 1.; 4. THEOREM 1 IMPLIES COROLLARY 2; REFERENCES; ACTIONS OF Z/2n ON S3; ABSTRACT; 1. INTRODUCTION; 2. HOMEOMORPHISMS WITH ALMOST TAME FIXED POINT SET.; 3. FREE ACTIONS OF Z/2n ON S3.; REFERENCES; PERIODIC HOMEOMORPHISMS ON NON-COMPACT 3 MANIFOLDS; ABSTRACT; 1. INTRODUCTION; 2. FIXED POINT FREE INVOLUTIONS ON R1 X T2.; 3. FIXED POINT FREE INVOLUTIONS ON R2 X S1. 4. FIXED POINT FREE INVOLUTIONS OF R1 X S2. REFERENCES; EQUIVARIANT FUNCTION SPACES AND EQUIVARIANT STABLE HOMOTOPY THEORY; 1. THE UNREDUCED SUSPENSION; 2. ALGEBRAIC OPERATIONS IN FG (SV,8); 3. COMPARISON OF ALGEBRAIC STRUCTURES; 4. FINAL REMARKS; REFERENCES; A PROPERTY OF A CHARACTERISTIC CLASS OF AN ORBIT FOLIATION; INTRODUCTION; 1. PRELIMINARIES; 2. CONNECTIONS IN VECTOR BUNDLES; 3. PROOF OF MAIN THEOREMS; REFERENCES; ORBIT STRUCTURE FOR LIE GROUP ACTIONS ON HIGHER COHOMOLOGY PROJECTIVE SPACES; INTRODUCTION; 1. STRUCTURE THEOREMS IN EQUIVARIANT COHOWOLOGY Transformation groups Congresses. Topological transformation groups Congresses. Groupes de transformations Congrès. Groupes topologiques de transformation Congrès. MATHEMATICS Algebra Linear. bisacsh Topological transformation groups fast Transformation groups fast Transformationsgruppe gnd http://d-nb.info/gnd/4127386-2 |
subject_GND | http://d-nb.info/gnd/4127386-2 |
title | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / |
title_auth | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / |
title_exact_search | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / |
title_full | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / edited by Czes Kosniowski. |
title_fullStr | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / edited by Czes Kosniowski. |
title_full_unstemmed | Transformation groups : proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / edited by Czes Kosniowski. |
title_short | Transformation groups : |
title_sort | transformation groups proceedings of the conference in the university of newcastle upon tyne august 1976 |
title_sub | proceedings of the conference in the University of Newcastle upon Tyne, August 1976 / |
topic | Transformation groups Congresses. Topological transformation groups Congresses. Groupes de transformations Congrès. Groupes topologiques de transformation Congrès. MATHEMATICS Algebra Linear. bisacsh Topological transformation groups fast Transformation groups fast Transformationsgruppe gnd http://d-nb.info/gnd/4127386-2 |
topic_facet | Transformation groups Congresses. Topological transformation groups Congresses. Groupes de transformations Congrès. Groupes topologiques de transformation Congrès. MATHEMATICS Algebra Linear. Topological transformation groups Transformation groups Transformationsgruppe Conference papers and proceedings Kongress. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399281 |
work_keys_str_mv | AT kosniowskiczes transformationgroupsproceedingsoftheconferenceintheuniversityofnewcastleupontyneaugust1976 |