A course of pure mathematics /:
"Since its publication in 1908, G.H. Hardy's Pure Mathematics has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Cambridge University Press,
2008.
|
Ausgabe: | 10th ed., centenary ed. / |
Schriftenreihe: | Cambridge mathematical library.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Since its publication in 1908, G.H. Hardy's Pure Mathematics has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit."--Jacket |
Beschreibung: | Reissue of the 1952 edition. |
Beschreibung: | 1 online resource (509 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780511989469 0511989466 9781139649018 1139649019 9781139638555 1139638556 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn818659372 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121119r20081952nyua ob 001 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d IDEBK |d N$T |d E7B |d OCLCF |d YDXCP |d OCLCQ |d COO |d OCLCQ |d WYU |d OCLCQ |d A6Q |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 853458293 |a 1066440696 | ||
020 | |a 9780511989469 |q (electronic bk.) | ||
020 | |a 0511989466 |q (electronic bk.) | ||
020 | |a 9781139649018 |q (electronic bk.) | ||
020 | |a 1139649019 |q (electronic bk.) | ||
020 | |a 9781139638555 |q (e-book) | ||
020 | |a 1139638556 |q (e-book) | ||
020 | |z 9780521720557 | ||
020 | |z 0521720559 | ||
035 | |a (OCoLC)818659372 |z (OCoLC)853458293 |z (OCoLC)1066440696 | ||
050 | 4 | |a QA303 |b .H24 2008eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515 |2 22 | |
084 | |a 26-01 |a 01A75 |a 00A05 |2 msc | ||
049 | |a MAIN | ||
100 | 1 | |a Hardy, G. H. |q (Godfrey Harold), |d 1877-1947. |1 https://id.oclc.org/worldcat/entity/E39PBJth4FQTHW3wr6XycjWkXd |0 http://id.loc.gov/authorities/names/n87124616 | |
245 | 1 | 2 | |a A course of pure mathematics / |c by G.H. Hardy. |
250 | |a 10th ed., centenary ed. / |b reissued with foreword by T.W. Körner. | ||
260 | |a New York : |b Cambridge University Press, |c 2008. | ||
300 | |a 1 online resource (509 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge mathematical library | |
500 | |a Reissue of the 1952 edition. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | 0 | |g Ch. 1. |t Real variables -- |g Ch. 2. |t Functions of real variables -- |g Ch. 3. |t Complex numbers -- |g Ch. 4. |t Limits of functions of a positive integral variable -- |g Ch. 5. |t Limits of functions of a continuous variable. Continuous and discontinuous functions -- |g Ch. 6. |t Derivatives and integrals -- |g Ch. 7. |t Additional theorems in the differential and integral calculus -- |g Ch. 8. |t Convergence of infinite series and infinite integrals -- |g Ch. 9. |t Logarithmic, exponential, and circular functions of a real variable -- |g Ch. 10. |t General theory of the logarithmic, exponential, and circular functions -- |g App. I. |t proof that every equation has a root -- |g App. II. |t note on double limit problems -- |g App. III. |t infinite in analysis and geometry -- |g App. IV. |t infinite in analysis and geometry. |
520 | 1 | |a "Since its publication in 1908, G.H. Hardy's Pure Mathematics has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit."--Jacket | |
588 | 0 | |a Print version record. | |
650 | 0 | |a Calculus. |0 http://id.loc.gov/authorities/subjects/sh85018802 | |
650 | 0 | |a Functions. |0 http://id.loc.gov/authorities/subjects/sh85052327 | |
650 | 6 | |a Calcul infinitésimal. | |
650 | 6 | |a Fonctions (Mathématiques) | |
650 | 7 | |a calculus. |2 aat | |
650 | 7 | |a functions (mathematics) |2 aat | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Calculus |2 fast | |
650 | 7 | |a Functions |2 fast | |
776 | 0 | 8 | |i Print version: |a Hardy, G.H. (Godfrey Harold), 1877-1947. |t Course of pure mathematics. |b 10th ed., centenary ed. |d New York : Cambridge University Press, 2008 |z 9780521720557 |w (DLC) 2008273851 |w (OCoLC)183264772 |
830 | 0 | |a Cambridge mathematical library. |0 http://id.loc.gov/authorities/names/n88500937 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=510948 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10733660 | ||
938 | |a EBSCOhost |b EBSC |n 510948 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25836225 | ||
938 | |a YBP Library Services |b YANK |n 10869847 | ||
938 | |a YBP Library Services |b YANK |n 9248115 | ||
938 | |a YBP Library Services |b YANK |n 10862096 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn818659372 |
---|---|
_version_ | 1816882214284034048 |
adam_text | |
any_adam_object | |
author | Hardy, G. H. (Godfrey Harold), 1877-1947 |
author_GND | http://id.loc.gov/authorities/names/n87124616 |
author_facet | Hardy, G. H. (Godfrey Harold), 1877-1947 |
author_role | |
author_sort | Hardy, G. H. 1877-1947 |
author_variant | g h h gh ghh |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA303 |
callnumber-raw | QA303 .H24 2008eb |
callnumber-search | QA303 .H24 2008eb |
callnumber-sort | QA 3303 H24 42008EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Real variables -- Functions of real variables -- Complex numbers -- Limits of functions of a positive integral variable -- Limits of functions of a continuous variable. Continuous and discontinuous functions -- Derivatives and integrals -- Additional theorems in the differential and integral calculus -- Convergence of infinite series and infinite integrals -- Logarithmic, exponential, and circular functions of a real variable -- General theory of the logarithmic, exponential, and circular functions -- proof that every equation has a root -- note on double limit problems -- infinite in analysis and geometry -- infinite in analysis and geometry. |
ctrlnum | (OCoLC)818659372 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 10th ed., centenary ed. / |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04293cam a2200709 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn818659372</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121119r20081952nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">853458293</subfield><subfield code="a">1066440696</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511989469</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511989466</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139649018</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139649019</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139638555</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139638556</subfield><subfield code="q">(e-book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521720557</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521720559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)818659372</subfield><subfield code="z">(OCoLC)853458293</subfield><subfield code="z">(OCoLC)1066440696</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA303</subfield><subfield code="b">.H24 2008eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">26-01</subfield><subfield code="a">01A75</subfield><subfield code="a">00A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hardy, G. H.</subfield><subfield code="q">(Godfrey Harold),</subfield><subfield code="d">1877-1947.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJth4FQTHW3wr6XycjWkXd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n87124616</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A course of pure mathematics /</subfield><subfield code="c">by G.H. Hardy.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">10th ed., centenary ed. /</subfield><subfield code="b">reissued with foreword by T.W. Körner.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2008.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (509 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge mathematical library</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Reissue of the 1952 edition.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="g">Ch. 1.</subfield><subfield code="t">Real variables --</subfield><subfield code="g">Ch. 2.</subfield><subfield code="t">Functions of real variables --</subfield><subfield code="g">Ch. 3.</subfield><subfield code="t">Complex numbers --</subfield><subfield code="g">Ch. 4.</subfield><subfield code="t">Limits of functions of a positive integral variable --</subfield><subfield code="g">Ch. 5.</subfield><subfield code="t">Limits of functions of a continuous variable. Continuous and discontinuous functions --</subfield><subfield code="g">Ch. 6.</subfield><subfield code="t">Derivatives and integrals --</subfield><subfield code="g">Ch. 7.</subfield><subfield code="t">Additional theorems in the differential and integral calculus --</subfield><subfield code="g">Ch. 8.</subfield><subfield code="t">Convergence of infinite series and infinite integrals --</subfield><subfield code="g">Ch. 9.</subfield><subfield code="t">Logarithmic, exponential, and circular functions of a real variable --</subfield><subfield code="g">Ch. 10.</subfield><subfield code="t">General theory of the logarithmic, exponential, and circular functions --</subfield><subfield code="g">App. I.</subfield><subfield code="t">proof that every equation has a root --</subfield><subfield code="g">App. II.</subfield><subfield code="t">note on double limit problems --</subfield><subfield code="g">App. III.</subfield><subfield code="t">infinite in analysis and geometry --</subfield><subfield code="g">App. IV.</subfield><subfield code="t">infinite in analysis and geometry.</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Since its publication in 1908, G.H. Hardy's Pure Mathematics has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit."--Jacket</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85018802</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Functions.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85052327</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul infinitésimal.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fonctions (Mathématiques)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">calculus.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">functions (mathematics)</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Hardy, G.H. (Godfrey Harold), 1877-1947.</subfield><subfield code="t">Course of pure mathematics.</subfield><subfield code="b">10th ed., centenary ed.</subfield><subfield code="d">New York : Cambridge University Press, 2008</subfield><subfield code="z">9780521720557</subfield><subfield code="w">(DLC) 2008273851</subfield><subfield code="w">(OCoLC)183264772</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge mathematical library.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88500937</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=510948</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733660</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">510948</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25836225</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10869847</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9248115</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10862096</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn818659372 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:03Z |
institution | BVB |
isbn | 9780511989469 0511989466 9781139649018 1139649019 9781139638555 1139638556 |
language | English |
oclc_num | 818659372 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (509 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2008 |
publishDateSearch | 1952 2008 |
publishDateSort | 2008 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge mathematical library. |
series2 | Cambridge mathematical library |
spelling | Hardy, G. H. (Godfrey Harold), 1877-1947. https://id.oclc.org/worldcat/entity/E39PBJth4FQTHW3wr6XycjWkXd http://id.loc.gov/authorities/names/n87124616 A course of pure mathematics / by G.H. Hardy. 10th ed., centenary ed. / reissued with foreword by T.W. Körner. New York : Cambridge University Press, 2008. 1 online resource (509 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge mathematical library Reissue of the 1952 edition. Includes bibliographical references and index. Ch. 1. Real variables -- Ch. 2. Functions of real variables -- Ch. 3. Complex numbers -- Ch. 4. Limits of functions of a positive integral variable -- Ch. 5. Limits of functions of a continuous variable. Continuous and discontinuous functions -- Ch. 6. Derivatives and integrals -- Ch. 7. Additional theorems in the differential and integral calculus -- Ch. 8. Convergence of infinite series and infinite integrals -- Ch. 9. Logarithmic, exponential, and circular functions of a real variable -- Ch. 10. General theory of the logarithmic, exponential, and circular functions -- App. I. proof that every equation has a root -- App. II. note on double limit problems -- App. III. infinite in analysis and geometry -- App. IV. infinite in analysis and geometry. "Since its publication in 1908, G.H. Hardy's Pure Mathematics has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of the missionary with the rigour of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit."--Jacket Print version record. Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Functions. http://id.loc.gov/authorities/subjects/sh85052327 Calcul infinitésimal. Fonctions (Mathématiques) calculus. aat functions (mathematics) aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Functions fast Print version: Hardy, G.H. (Godfrey Harold), 1877-1947. Course of pure mathematics. 10th ed., centenary ed. New York : Cambridge University Press, 2008 9780521720557 (DLC) 2008273851 (OCoLC)183264772 Cambridge mathematical library. http://id.loc.gov/authorities/names/n88500937 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=510948 Volltext |
spellingShingle | Hardy, G. H. (Godfrey Harold), 1877-1947 A course of pure mathematics / Cambridge mathematical library. Real variables -- Functions of real variables -- Complex numbers -- Limits of functions of a positive integral variable -- Limits of functions of a continuous variable. Continuous and discontinuous functions -- Derivatives and integrals -- Additional theorems in the differential and integral calculus -- Convergence of infinite series and infinite integrals -- Logarithmic, exponential, and circular functions of a real variable -- General theory of the logarithmic, exponential, and circular functions -- proof that every equation has a root -- note on double limit problems -- infinite in analysis and geometry -- infinite in analysis and geometry. Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Functions. http://id.loc.gov/authorities/subjects/sh85052327 Calcul infinitésimal. Fonctions (Mathématiques) calculus. aat functions (mathematics) aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Functions fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85018802 http://id.loc.gov/authorities/subjects/sh85052327 |
title | A course of pure mathematics / |
title_alt | Real variables -- Functions of real variables -- Complex numbers -- Limits of functions of a positive integral variable -- Limits of functions of a continuous variable. Continuous and discontinuous functions -- Derivatives and integrals -- Additional theorems in the differential and integral calculus -- Convergence of infinite series and infinite integrals -- Logarithmic, exponential, and circular functions of a real variable -- General theory of the logarithmic, exponential, and circular functions -- proof that every equation has a root -- note on double limit problems -- infinite in analysis and geometry -- infinite in analysis and geometry. |
title_auth | A course of pure mathematics / |
title_exact_search | A course of pure mathematics / |
title_full | A course of pure mathematics / by G.H. Hardy. |
title_fullStr | A course of pure mathematics / by G.H. Hardy. |
title_full_unstemmed | A course of pure mathematics / by G.H. Hardy. |
title_short | A course of pure mathematics / |
title_sort | course of pure mathematics |
topic | Calculus. http://id.loc.gov/authorities/subjects/sh85018802 Functions. http://id.loc.gov/authorities/subjects/sh85052327 Calcul infinitésimal. Fonctions (Mathématiques) calculus. aat functions (mathematics) aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Calculus fast Functions fast |
topic_facet | Calculus. Functions. Calcul infinitésimal. Fonctions (Mathématiques) calculus. functions (mathematics) MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Calculus Functions |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=510948 |
work_keys_str_mv | AT hardygh acourseofpuremathematics AT hardygh courseofpuremathematics |