Nonstandard analysis and its applications /:
This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topol...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York :
Cambridge University Press,
1988.
|
Schriftenreihe: | London Mathematical Society student texts ;
10. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject. |
Beschreibung: | Papers presented at a conference held at the University of Hull in 1986. |
Beschreibung: | 1 online resource (xiii, 346 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139172110 1139172115 9781107087934 1107087937 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn818223030 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121115s1988 enk ob 101 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d N$T |d IDEBK |d OCLCF |d YDXCP |d OCL |d OCLCQ |d AGLDB |d YDX |d OCLCO |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d STF |d AU@ |d M8D |d UKAHL |d OCLCQ |d OCL |d AJS |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 846492891 | ||
020 | |a 9781139172110 |q (electronic bk.) | ||
020 | |a 1139172115 |q (electronic bk.) | ||
020 | |a 9781107087934 |q (electronic bk.) | ||
020 | |a 1107087937 |q (electronic bk.) | ||
020 | |z 052135109X | ||
020 | |z 9780521351096 | ||
020 | |z 0521359473 | ||
020 | |z 9780521359474 | ||
035 | |a (OCoLC)818223030 |z (OCoLC)846492891 | ||
050 | 4 | |a QA299.82 |b .N65 1988eb | |
072 | 7 | |a MAT |x 003000 |2 bisacsh | |
082 | 7 | |a 519.4 |2 22 | |
084 | |a 31.40 |2 bcl | ||
084 | |a 31.46 |2 bcl | ||
084 | |a *00B25 |2 msc | ||
084 | |a 03-06 |2 msc | ||
084 | |a SK 130 |2 rvk | ||
049 | |a MAIN | ||
245 | 0 | 0 | |a Nonstandard analysis and its applications / |c edited by Nigel Cutland. |
260 | |a Cambridge [England] ; |a New York : |b Cambridge University Press, |c 1988. | ||
300 | |a 1 online resource (xiii, 346 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 10 | |
500 | |a Papers presented at a conference held at the University of Hull in 1986. | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | |a This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject. | ||
505 | 0 | |a Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I.A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I. 2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS | |
505 | 8 | |a I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II. 1.1 Definition; II. 1.2 Definition; II. 1.3 LeMMA; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Exaaple; II. 2.2 Definition; II .2.3 Lemma; II. 2.4 Lemma; II .2.5 Theorem; II. 2.6 Exaaple; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem | |
505 | 8 | |a III. SATURATION AND TOPOLOGYIII. 1 BEYOND x1-SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 TheoreM; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorea; III. 2.9 Ascoli's Theorea; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS. AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example | |
505 | 8 | |a III. 3.9 PropositionIV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES L(V(S) AND L*(V(S)); IV. 1.1 Definition; IV. I .2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2. Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982)) | |
505 | 8 | |a 2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 ExampIe; 4.2 Fubini Theorem for Loeb Measures (Keisler(1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS | |
650 | 0 | |a Nonstandard mathematical analysis |v Congresses. | |
650 | 0 | |a Nonstandard mathematical analysis |x Congresses. | |
650 | 6 | |a Analyse mathématique non standard |x Congrès. | |
650 | 6 | |a Analyse mathématique non standard |v Congrès. | |
650 | 7 | |a MATHEMATICS |x Applied. |2 bisacsh | |
650 | 7 | |a Nonstandard mathematical analysis |2 fast | |
650 | 7 | |a Nonstandard-Analysis |2 gnd |0 http://d-nb.info/gnd/4137021-1 | |
650 | 7 | |a Analyse mathématique non standard. |2 ram | |
655 | 7 | |a Conference papers and proceedings |2 fast | |
700 | 1 | |a Cutland, Nigel. |0 http://id.loc.gov/authorities/names/n79048335 | |
758 | |i has work: |a Nonstandard analysis and its applications (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFCBRcxyyqkb6cQHFGBmq3 |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |t Nonstandard analysis and its applications. |d Cambridge, [England] ; New York : Cambridge University Press, 1988 |z 052135109X |w (DLC) 88016194 |w (OCoLC)18013779 |
830 | 0 | |a London Mathematical Society student texts ; |v 10. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570393 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH22950065 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26478646 | ||
938 | |a EBSCOhost |b EBSC |n 570393 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25773435 | ||
938 | |a YBP Library Services |b YANK |n 9249013 | ||
938 | |a YBP Library Services |b YANK |n 10734764 | ||
938 | |a YBP Library Services |b YANK |n 10762235 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn818223030 |
---|---|
_version_ | 1816882214236848129 |
adam_text | |
any_adam_object | |
author2 | Cutland, Nigel |
author2_role | |
author2_variant | n c nc |
author_GND | http://id.loc.gov/authorities/names/n79048335 |
author_facet | Cutland, Nigel |
author_sort | Cutland, Nigel |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA299 |
callnumber-raw | QA299.82 .N65 1988eb |
callnumber-search | QA299.82 .N65 1988eb |
callnumber-sort | QA 3299.82 N65 41988EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 130 |
collection | ZDB-4-EBA |
contents | Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I.A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I. 2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II. 1.1 Definition; II. 1.2 Definition; II. 1.3 LeMMA; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Exaaple; II. 2.2 Definition; II .2.3 Lemma; II. 2.4 Lemma; II .2.5 Theorem; II. 2.6 Exaaple; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem III. SATURATION AND TOPOLOGYIII. 1 BEYOND x1-SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 TheoreM; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorea; III. 2.9 Ascoli's Theorea; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS. AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example III. 3.9 PropositionIV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES L(V(S) AND L*(V(S)); IV. 1.1 Definition; IV. I .2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2. Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982)) 2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 ExampIe; 4.2 Fubini Theorem for Loeb Measures (Keisler(1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS |
ctrlnum | (OCoLC)818223030 |
dewey-full | 519.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.4 |
dewey-search | 519.4 |
dewey-sort | 3519.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07529cam a2200793 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn818223030</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121115s1988 enk ob 101 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCL</subfield><subfield code="d">AJS</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">846492891</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172110</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139172115</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107087934</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107087937</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">052135109X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521351096</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521359473</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521359474</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)818223030</subfield><subfield code="z">(OCoLC)846492891</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA299.82</subfield><subfield code="b">.N65 1988eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">003000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.4</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.40</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*00B25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">03-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Nonstandard analysis and its applications /</subfield><subfield code="c">edited by Nigel Cutland.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1988.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 346 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Papers presented at a conference held at the University of Hull in 1986.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I.A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I. 2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II. 1.1 Definition; II. 1.2 Definition; II. 1.3 LeMMA; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Exaaple; II. 2.2 Definition; II .2.3 Lemma; II. 2.4 Lemma; II .2.5 Theorem; II. 2.6 Exaaple; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">III. SATURATION AND TOPOLOGYIII. 1 BEYOND x1-SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 TheoreM; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorea; III. 2.9 Ascoli's Theorea; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS. AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">III. 3.9 PropositionIV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES L(V(S) AND L*(V(S)); IV. 1.1 Definition; IV. I .2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2. Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982))</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 ExampIe; 4.2 Fubini Theorem for Loeb Measures (Keisler(1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonstandard mathematical analysis</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonstandard mathematical analysis</subfield><subfield code="x">Congresses.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse mathématique non standard</subfield><subfield code="x">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Analyse mathématique non standard</subfield><subfield code="v">Congrès.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Applied.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonstandard mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonstandard-Analysis</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4137021-1</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Analyse mathématique non standard.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Conference papers and proceedings</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cutland, Nigel.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n79048335</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Nonstandard analysis and its applications (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFCBRcxyyqkb6cQHFGBmq3</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="t">Nonstandard analysis and its applications.</subfield><subfield code="d">Cambridge, [England] ; New York : Cambridge University Press, 1988</subfield><subfield code="z">052135109X</subfield><subfield code="w">(DLC) 88016194</subfield><subfield code="w">(OCoLC)18013779</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">10.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570393</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH22950065</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26478646</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">570393</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25773435</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9249013</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734764</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10762235</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | Conference papers and proceedings fast |
genre_facet | Conference papers and proceedings |
id | ZDB-4-EBA-ocn818223030 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:03Z |
institution | BVB |
isbn | 9781139172110 1139172115 9781107087934 1107087937 |
language | English |
oclc_num | 818223030 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 346 pages) |
psigel | ZDB-4-EBA |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Nonstandard analysis and its applications / edited by Nigel Cutland. Cambridge [England] ; New York : Cambridge University Press, 1988. 1 online resource (xiii, 346 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 10 Papers presented at a conference held at the University of Hull in 1986. Includes bibliographical references and index. Print version record. This textbook is an introduction to non-standard analysis and to its many applications. Non standard analysis (NSA) is a subject of great research interest both in its own right and as a tool for answering questions in subjects such as functional analysis, probability, mathematical physics and topology. The book arises from a conference held in July 1986 at the University of Hull which was designed to provide both an introduction to the subject through introductory lectures, and surveys of the state of research. The first part of the book is devoted to the introductory lectures and the second part consists of presentations of applications of NSA to dynamical systems, topology, automata and orderings on words, the non- linear Boltzmann equation and integration on non-standard hulls of vector lattices. One of the book's attractions is that a standard notation is used throughout so the underlying theory is easily applied in a number of different settings. Consequently this book will be ideal for graduate students and research mathematicians coming to the subject for the first time and it will provide an attractive and stimulating account of the subject. Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I.A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I. 2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II. 1.1 Definition; II. 1.2 Definition; II. 1.3 LeMMA; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Exaaple; II. 2.2 Definition; II .2.3 Lemma; II. 2.4 Lemma; II .2.5 Theorem; II. 2.6 Exaaple; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem III. SATURATION AND TOPOLOGYIII. 1 BEYOND x1-SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 TheoreM; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorea; III. 2.9 Ascoli's Theorea; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS. AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example III. 3.9 PropositionIV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES L(V(S) AND L*(V(S)); IV. 1.1 Definition; IV. I .2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2. Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982)) 2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 ExampIe; 4.2 Fubini Theorem for Loeb Measures (Keisler(1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS Nonstandard mathematical analysis Congresses. Analyse mathématique non standard Congrès. MATHEMATICS Applied. bisacsh Nonstandard mathematical analysis fast Nonstandard-Analysis gnd http://d-nb.info/gnd/4137021-1 Analyse mathématique non standard. ram Conference papers and proceedings fast Cutland, Nigel. http://id.loc.gov/authorities/names/n79048335 has work: Nonstandard analysis and its applications (Text) https://id.oclc.org/worldcat/entity/E39PCFCBRcxyyqkb6cQHFGBmq3 https://id.oclc.org/worldcat/ontology/hasWork Print version: Nonstandard analysis and its applications. Cambridge, [England] ; New York : Cambridge University Press, 1988 052135109X (DLC) 88016194 (OCoLC)18013779 London Mathematical Society student texts ; 10. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570393 Volltext |
spellingShingle | Nonstandard analysis and its applications / London Mathematical Society student texts ; Cover; Series Page; Title; Copyright; CONTENTS; PREFACE; CONTRIBUTORS; AN INVITATION TO NONSTANDARD ANALYSIS; INTRODUCTION; I.A SET OF HYPERREALS; I.1 CONSTRUCTION OF *R; I.1.1 Example; I.1.2 Definition; I.1.3 Definition; I.1.4 Example; I.1.5 Definition; I.1.6 Proposition; I.1.7 Definition; I.1.8 Lemma; I.2 INTERNAL SETS AND FUNCTIONS; I.2.1 Definition; I. 2.2 Example; I.2.3 Proposition; I.2.4 Corollary; I.2.5 Theorem (x1-saturation); I.2.6 Corollary; I.2.7 Proposition; I.2.8 Definition; I.2.9 Proposition; I.2.10 Definition; I.2.11 Exaaple; I.2.12 Proposition; I.3 INFINITESIMAL CALCULUS I.3.1 PropositionI. 3.2 Proposition; I.3.3 Proposition; I.3.4 Corollary; I.3.5 Proposition; I.3.6 Corollary; I.3.7 Theorem; II. SUPERSTRUCTURES AND LOEB MEASURES; II. 1 SUPERSTRUCTURES; II. 1.1 Definition; II. 1.2 Definition; II. 1.3 LeMMA; II. 1.4 Proposition; II. 2 LOEB MEASURES; II. 2.1 Exaaple; II. 2.2 Definition; II .2.3 Lemma; II. 2.4 Lemma; II .2.5 Theorem; II. 2.6 Exaaple; II. 2.7 Example; II. 2.8 Lemma; II. 2.10 Theorem; II. 2.11 Theorem; II. 2.12 Corollary; II. 3 BROWNIAN MOTION; II. 3.1 Definition; II. 3.2 Lemma; II. 3.3 Lemma; II. 3.4 Lemma; II. 3.4 Lemma; II. 3.6 Theorem III. SATURATION AND TOPOLOGYIII. 1 BEYOND x1-SATURATION; III. 1.1 Definition; III. 1.2 Theorem; III. 1.3 TheoreM; III. 1.4 Lemma; III. 2 GENERAL TOPOLOGY; III. 2.1 Proposition; III. 2.2 Proposition; III. 2.3 Proposition; III. 2.4 Proposition; III. 2.5 Example; III. 2.6 Proposition; III. 2.7 Tychonov's Theorem; III. 2.8 Alaoglu's Theorea; III. 2.9 Ascoli's Theorea; III. 2.10 Example; III. 3 COMPLETIONS, COMPACTIFICATIONS. AND NONSTANDARD HULLS; III. 3.1 Proposition; III. 3.2 Corollary; III. 3.3 Proposition; III. 3.4 Example; III. 3.5 Example; III. 3.6 Proposition; III. 3.7 Corollary; III. 3.8 Example III. 3.9 PropositionIV. THE TRANSFER PRINCIPLE; IV. 1 THE LANGUAGES L(V(S) AND L*(V(S)); IV. 1.1 Definition; IV. I .2 Example; IV. 2 LOS' THEOREM AND THE TRANSFER PRINCIPLE; IV. 2.1 Definition; IV. 2.2. Lemma; IV. 2.3 Los' Theorem; IV. 2.4 Transfer Principle; IV. 2.5 Internal Definition Principle; IV. 3 AXIOMATIC NONSTANDARD ANALYSIS; APPENDIX. ULTRAFILTERS; A.1 Proposition; A.2 Lemma; A.3 Lemma; A.4 Theorem; NOTES; REFERENCES; INFINITESIMALS IN PROBABILITY THEORY; 1. THE HYPERFINITE TIME LINE; Definition; 1.2 Proposition; 1.3 Corollary; 1.4 Theorem (Anderson (1982)) 2. UNIVERSAL AND HOMOGENEOUS PROBABILITY SPACES2.1 Proposition; 2.2 Proposition; Definition; Definition; 2.3 Theorem (Keisler (1984)); 3. STOCHASTIC PROCESSES; 3.1 Lemma; 3.2 Proposition; 3.3 Proposition; 4. PRODUCTS OF LOEB SPACES; 4.1 ExampIe; 4.2 Fubini Theorem for Loeb Measures (Keisler(1984)); 4.3 Theorem (Keisler (1984)); 5. LIFTINGS OF STOCHASTIC PROCESSES; Definition; 5.1 Proposition; Definition; 5.2 Lemma; Definition; 5.3 Proposition; 5.4 Example; 5.5 Example; 5.6 Example; 6. ADAPTED PROBABILITY SPACES; 6.1 Proposition; Definition; Definition; 6.2 Theorem; 7. ADAPTED DISTRIBUTIONS Nonstandard mathematical analysis Congresses. Analyse mathématique non standard Congrès. MATHEMATICS Applied. bisacsh Nonstandard mathematical analysis fast Nonstandard-Analysis gnd http://d-nb.info/gnd/4137021-1 Analyse mathématique non standard. ram |
subject_GND | http://d-nb.info/gnd/4137021-1 |
title | Nonstandard analysis and its applications / |
title_auth | Nonstandard analysis and its applications / |
title_exact_search | Nonstandard analysis and its applications / |
title_full | Nonstandard analysis and its applications / edited by Nigel Cutland. |
title_fullStr | Nonstandard analysis and its applications / edited by Nigel Cutland. |
title_full_unstemmed | Nonstandard analysis and its applications / edited by Nigel Cutland. |
title_short | Nonstandard analysis and its applications / |
title_sort | nonstandard analysis and its applications |
topic | Nonstandard mathematical analysis Congresses. Analyse mathématique non standard Congrès. MATHEMATICS Applied. bisacsh Nonstandard mathematical analysis fast Nonstandard-Analysis gnd http://d-nb.info/gnd/4137021-1 Analyse mathématique non standard. ram |
topic_facet | Nonstandard mathematical analysis Congresses. Analyse mathématique non standard Congrès. MATHEMATICS Applied. Nonstandard mathematical analysis Nonstandard-Analysis Analyse mathématique non standard. Conference papers and proceedings |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570393 |
work_keys_str_mv | AT cutlandnigel nonstandardanalysisanditsapplications |