Hilbert space :: compact operators and the trace theorem /
Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everyth...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge [England] ; New York, NY :
Cambridge University Press,
©1993.
|
Schriftenreihe: | London Mathematical Society student texts ;
27. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space. |
Beschreibung: | 1 online resource (xii, 131 pages) |
Bibliographie: | Includes bibliographical references (page 126) and index. |
ISBN: | 9781139172592 113917259X 9781107088320 1107088321 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn817977283 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121114s1993 enk ob 001 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d N$T |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d HEBIS |d OCLCO |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d OCLCQ |d INARC |d AJS |d SFB |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 846494936 | ||
020 | |a 9781139172592 |q (electronic bk.) | ||
020 | |a 113917259X |q (electronic bk.) | ||
020 | |a 9781107088320 |q (electronic bk.) | ||
020 | |a 1107088321 |q (electronic bk.) | ||
020 | |z 0521418844 | ||
020 | |z 9780521418843 | ||
020 | |z 0521429331 | ||
020 | |z 9780521429337 | ||
035 | |a (OCoLC)817977283 |z (OCoLC)846494936 | ||
050 | 4 | |a QA322.4 |b .R48 1993eb | |
072 | 7 | |a MAT |x 031000 |2 bisacsh | |
082 | 7 | |a 515/.733 |2 22 | |
084 | |a 31.46 |2 bcl | ||
084 | |a *47B07 |2 msc | ||
084 | |a 47-02 |2 msc | ||
084 | |a 47B10 |2 msc | ||
084 | |a 47B50 |2 msc | ||
084 | |a SK 600 |2 rvk | ||
084 | |a MAT 472f |2 stub | ||
084 | |a MAT 463f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Retherford, J. R. | |
245 | 1 | 0 | |a Hilbert space : |b compact operators and the trace theorem / |c J.R. Retherford. |
260 | |a Cambridge [England] ; |a New York, NY : |b Cambridge University Press, |c ©1993. | ||
300 | |a 1 online resource (xii, 131 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London mathematical society student texts ; |v 27 | |
504 | |a Includes bibliographical references (page 126) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space. | ||
505 | 0 | |a Cover; Series Page; Title; Copyright; Dedication; ACKNOWLEDGEMENT; CONTENTS; INTRODUCTION; 0. THE INEQUALITIES OF IT ALL; I. PRELIMINARIES; Exercise 1. Read the introduction!; Remarks, Exercises and Hints; II. ORTHOGONALITY; Remarks, Exercises and Hints; III. ISOMORPHISMS AND ISOMETRIES; Remarks, Exercises and Hints; IV. BOUNDED LINEAR OPERATORS ON HILBERT SPACE; Remarks, Exercises, and Hints; V. ELEMENTARY SPECTRAL THEORY; Remarks, Exercises, Hints; VI. SELF-ADJOINT OPERATORS; Remarks, Exercises, and Hints; VII. COMPACT OPERATORS; Remarks, Exercises and Hints | |
505 | 8 | |a APPENDIX A: COMPACT INTEGRAL OPERATORSVIII. SQUARE ROOTS; Remarks, Exercises, and Hints; IX. THE WEAK WEYL INEQUALITY; APPENDIX B: THE WEYL INEQUALITY; Remarks, Exercises and Hints; X. IDLBERT-SCHMIDT AND TRACE CLASS OPERATORS; Remarks, Exercises and Hints; XI. THE LIDSKIJ TRACE THEOREM; Final Remarks, Exercises and Hints; APPENDIX C: LOCALIZATION OF EIGENVALUES; BIBLIOGRAPHY; Books; Research Papers; Future Reading; INDEX OF NOTATION; INDEX OF TERMS | |
650 | 0 | |a Hilbert space. |0 http://id.loc.gov/authorities/subjects/sh85060803 | |
650 | 6 | |a Espace de Hilbert. | |
650 | 7 | |a MATHEMATICS |x Transformations. |2 bisacsh | |
650 | 7 | |a Hilbert space |2 fast | |
650 | 7 | |a Hilbert-Raum |2 gnd |0 http://d-nb.info/gnd/4159850-7 | |
650 | 7 | |a Kompakter Operator |2 gnd |0 http://d-nb.info/gnd/4123545-9 | |
650 | 1 | 7 | |a Hilbertruimten. |2 gtt |
650 | 7 | |a Hilbert, espace de. |2 ram | |
758 | |i has work: |a Hilbert space (Text) |1 https://id.oclc.org/worldcat/entity/E39PD3MpTrqd8Pcc4CFVfyxwrV |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Retherford, J.R. |t Hilbert space. |d Cambridge [England] ; New York, NY : Cambridge University Press, ©1993 |z 0521418844 |w (DLC) 93161668 |w (OCoLC)28388333 |
830 | 0 | |a London Mathematical Society student texts ; |v 27. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570394 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH22950100 | ||
938 | |a EBSCOhost |b EBSC |n 570394 | ||
938 | |a Internet Archive |b INAR |n hilbertspacecomp0000reth | ||
938 | |a YBP Library Services |b YANK |n 9249048 | ||
938 | |a YBP Library Services |b YANK |n 10734770 | ||
938 | |a YBP Library Services |b YANK |n 10762241 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn817977283 |
---|---|
_version_ | 1816882214076416002 |
adam_text | |
any_adam_object | |
author | Retherford, J. R. |
author_facet | Retherford, J. R. |
author_role | |
author_sort | Retherford, J. R. |
author_variant | j r r jr jrr |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA322 |
callnumber-raw | QA322.4 .R48 1993eb |
callnumber-search | QA322.4 .R48 1993eb |
callnumber-sort | QA 3322.4 R48 41993EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 600 |
classification_tum | MAT 472f MAT 463f |
collection | ZDB-4-EBA |
contents | Cover; Series Page; Title; Copyright; Dedication; ACKNOWLEDGEMENT; CONTENTS; INTRODUCTION; 0. THE INEQUALITIES OF IT ALL; I. PRELIMINARIES; Exercise 1. Read the introduction!; Remarks, Exercises and Hints; II. ORTHOGONALITY; Remarks, Exercises and Hints; III. ISOMORPHISMS AND ISOMETRIES; Remarks, Exercises and Hints; IV. BOUNDED LINEAR OPERATORS ON HILBERT SPACE; Remarks, Exercises, and Hints; V. ELEMENTARY SPECTRAL THEORY; Remarks, Exercises, Hints; VI. SELF-ADJOINT OPERATORS; Remarks, Exercises, and Hints; VII. COMPACT OPERATORS; Remarks, Exercises and Hints APPENDIX A: COMPACT INTEGRAL OPERATORSVIII. SQUARE ROOTS; Remarks, Exercises, and Hints; IX. THE WEAK WEYL INEQUALITY; APPENDIX B: THE WEYL INEQUALITY; Remarks, Exercises and Hints; X. IDLBERT-SCHMIDT AND TRACE CLASS OPERATORS; Remarks, Exercises and Hints; XI. THE LIDSKIJ TRACE THEOREM; Final Remarks, Exercises and Hints; APPENDIX C: LOCALIZATION OF EIGENVALUES; BIBLIOGRAPHY; Books; Research Papers; Future Reading; INDEX OF NOTATION; INDEX OF TERMS |
ctrlnum | (OCoLC)817977283 |
dewey-full | 515/.733 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.733 |
dewey-search | 515/.733 |
dewey-sort | 3515 3733 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04750cam a2200757 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn817977283</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121114s1993 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INARC</subfield><subfield code="d">AJS</subfield><subfield code="d">SFB</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">846494936</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139172592</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">113917259X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107088320</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107088321</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521418844</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521418843</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521429331</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521429337</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)817977283</subfield><subfield code="z">(OCoLC)846494936</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA322.4</subfield><subfield code="b">.R48 1993eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">031000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.733</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">*47B07</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47-02</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47B10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">47B50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 472f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 463f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Retherford, J. R.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hilbert space :</subfield><subfield code="b">compact operators and the trace theorem /</subfield><subfield code="c">J.R. Retherford.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge [England] ;</subfield><subfield code="a">New York, NY :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1993.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 131 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London mathematical society student texts ;</subfield><subfield code="v">27</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (page 126) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Series Page; Title; Copyright; Dedication; ACKNOWLEDGEMENT; CONTENTS; INTRODUCTION; 0. THE INEQUALITIES OF IT ALL; I. PRELIMINARIES; Exercise 1. Read the introduction!; Remarks, Exercises and Hints; II. ORTHOGONALITY; Remarks, Exercises and Hints; III. ISOMORPHISMS AND ISOMETRIES; Remarks, Exercises and Hints; IV. BOUNDED LINEAR OPERATORS ON HILBERT SPACE; Remarks, Exercises, and Hints; V. ELEMENTARY SPECTRAL THEORY; Remarks, Exercises, Hints; VI. SELF-ADJOINT OPERATORS; Remarks, Exercises, and Hints; VII. COMPACT OPERATORS; Remarks, Exercises and Hints</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">APPENDIX A: COMPACT INTEGRAL OPERATORSVIII. SQUARE ROOTS; Remarks, Exercises, and Hints; IX. THE WEAK WEYL INEQUALITY; APPENDIX B: THE WEYL INEQUALITY; Remarks, Exercises and Hints; X. IDLBERT-SCHMIDT AND TRACE CLASS OPERATORS; Remarks, Exercises and Hints; XI. THE LIDSKIJ TRACE THEOREM; Final Remarks, Exercises and Hints; APPENDIX C: LOCALIZATION OF EIGENVALUES; BIBLIOGRAPHY; Books; Research Papers; Future Reading; INDEX OF NOTATION; INDEX OF TERMS</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Hilbert space.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85060803</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Espace de Hilbert.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Transformations.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert space</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert-Raum</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4159850-7</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Kompakter Operator</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4123545-9</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Hilbertruimten.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hilbert, espace de.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Hilbert space (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PD3MpTrqd8Pcc4CFVfyxwrV</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Retherford, J.R.</subfield><subfield code="t">Hilbert space.</subfield><subfield code="d">Cambridge [England] ; New York, NY : Cambridge University Press, ©1993</subfield><subfield code="z">0521418844</subfield><subfield code="w">(DLC) 93161668</subfield><subfield code="w">(OCoLC)28388333</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">27.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570394</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH22950100</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">570394</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">hilbertspacecomp0000reth</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9249048</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734770</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10762241</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn817977283 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:03Z |
institution | BVB |
isbn | 9781139172592 113917259X 9781107088320 1107088321 |
language | English |
oclc_num | 817977283 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 131 pages) |
psigel | ZDB-4-EBA |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London mathematical society student texts ; |
spelling | Retherford, J. R. Hilbert space : compact operators and the trace theorem / J.R. Retherford. Cambridge [England] ; New York, NY : Cambridge University Press, ©1993. 1 online resource (xii, 131 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London mathematical society student texts ; 27 Includes bibliographical references (page 126) and index. Print version record. Professor Retherford's aim in this book is to provide the reader with a virtually self-contained treatment of Hilbert space theory, leading to an elementary proof of the Lidskij trace theorem. He assumes the reader is familiar with only linear algebra and advanced calculus, and develops everything needed to introduce the ideas of compact, self-adjoint, Hilbert-Schmidt and trace class operators. Many exercises and hints are included, and throughout the emphasis is on a user-friendly approach. Advanced undergraduates and graduate students will find that this book presents a unique introduction to operators and Hilbert space. Cover; Series Page; Title; Copyright; Dedication; ACKNOWLEDGEMENT; CONTENTS; INTRODUCTION; 0. THE INEQUALITIES OF IT ALL; I. PRELIMINARIES; Exercise 1. Read the introduction!; Remarks, Exercises and Hints; II. ORTHOGONALITY; Remarks, Exercises and Hints; III. ISOMORPHISMS AND ISOMETRIES; Remarks, Exercises and Hints; IV. BOUNDED LINEAR OPERATORS ON HILBERT SPACE; Remarks, Exercises, and Hints; V. ELEMENTARY SPECTRAL THEORY; Remarks, Exercises, Hints; VI. SELF-ADJOINT OPERATORS; Remarks, Exercises, and Hints; VII. COMPACT OPERATORS; Remarks, Exercises and Hints APPENDIX A: COMPACT INTEGRAL OPERATORSVIII. SQUARE ROOTS; Remarks, Exercises, and Hints; IX. THE WEAK WEYL INEQUALITY; APPENDIX B: THE WEYL INEQUALITY; Remarks, Exercises and Hints; X. IDLBERT-SCHMIDT AND TRACE CLASS OPERATORS; Remarks, Exercises and Hints; XI. THE LIDSKIJ TRACE THEOREM; Final Remarks, Exercises and Hints; APPENDIX C: LOCALIZATION OF EIGENVALUES; BIBLIOGRAPHY; Books; Research Papers; Future Reading; INDEX OF NOTATION; INDEX OF TERMS Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Espace de Hilbert. MATHEMATICS Transformations. bisacsh Hilbert space fast Hilbert-Raum gnd http://d-nb.info/gnd/4159850-7 Kompakter Operator gnd http://d-nb.info/gnd/4123545-9 Hilbertruimten. gtt Hilbert, espace de. ram has work: Hilbert space (Text) https://id.oclc.org/worldcat/entity/E39PD3MpTrqd8Pcc4CFVfyxwrV https://id.oclc.org/worldcat/ontology/hasWork Print version: Retherford, J.R. Hilbert space. Cambridge [England] ; New York, NY : Cambridge University Press, ©1993 0521418844 (DLC) 93161668 (OCoLC)28388333 London Mathematical Society student texts ; 27. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570394 Volltext |
spellingShingle | Retherford, J. R. Hilbert space : compact operators and the trace theorem / London Mathematical Society student texts ; Cover; Series Page; Title; Copyright; Dedication; ACKNOWLEDGEMENT; CONTENTS; INTRODUCTION; 0. THE INEQUALITIES OF IT ALL; I. PRELIMINARIES; Exercise 1. Read the introduction!; Remarks, Exercises and Hints; II. ORTHOGONALITY; Remarks, Exercises and Hints; III. ISOMORPHISMS AND ISOMETRIES; Remarks, Exercises and Hints; IV. BOUNDED LINEAR OPERATORS ON HILBERT SPACE; Remarks, Exercises, and Hints; V. ELEMENTARY SPECTRAL THEORY; Remarks, Exercises, Hints; VI. SELF-ADJOINT OPERATORS; Remarks, Exercises, and Hints; VII. COMPACT OPERATORS; Remarks, Exercises and Hints APPENDIX A: COMPACT INTEGRAL OPERATORSVIII. SQUARE ROOTS; Remarks, Exercises, and Hints; IX. THE WEAK WEYL INEQUALITY; APPENDIX B: THE WEYL INEQUALITY; Remarks, Exercises and Hints; X. IDLBERT-SCHMIDT AND TRACE CLASS OPERATORS; Remarks, Exercises and Hints; XI. THE LIDSKIJ TRACE THEOREM; Final Remarks, Exercises and Hints; APPENDIX C: LOCALIZATION OF EIGENVALUES; BIBLIOGRAPHY; Books; Research Papers; Future Reading; INDEX OF NOTATION; INDEX OF TERMS Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Espace de Hilbert. MATHEMATICS Transformations. bisacsh Hilbert space fast Hilbert-Raum gnd http://d-nb.info/gnd/4159850-7 Kompakter Operator gnd http://d-nb.info/gnd/4123545-9 Hilbertruimten. gtt Hilbert, espace de. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85060803 http://d-nb.info/gnd/4159850-7 http://d-nb.info/gnd/4123545-9 |
title | Hilbert space : compact operators and the trace theorem / |
title_auth | Hilbert space : compact operators and the trace theorem / |
title_exact_search | Hilbert space : compact operators and the trace theorem / |
title_full | Hilbert space : compact operators and the trace theorem / J.R. Retherford. |
title_fullStr | Hilbert space : compact operators and the trace theorem / J.R. Retherford. |
title_full_unstemmed | Hilbert space : compact operators and the trace theorem / J.R. Retherford. |
title_short | Hilbert space : |
title_sort | hilbert space compact operators and the trace theorem |
title_sub | compact operators and the trace theorem / |
topic | Hilbert space. http://id.loc.gov/authorities/subjects/sh85060803 Espace de Hilbert. MATHEMATICS Transformations. bisacsh Hilbert space fast Hilbert-Raum gnd http://d-nb.info/gnd/4159850-7 Kompakter Operator gnd http://d-nb.info/gnd/4123545-9 Hilbertruimten. gtt Hilbert, espace de. ram |
topic_facet | Hilbert space. Espace de Hilbert. MATHEMATICS Transformations. Hilbert space Hilbert-Raum Kompakter Operator Hilbertruimten. Hilbert, espace de. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570394 |
work_keys_str_mv | AT retherfordjr hilbertspacecompactoperatorsandthetracetheorem |