Set theory for the working mathematician /:
This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory,...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
©1997.
|
Schriftenreihe: | London Mathematical Society student texts ;
39. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory, culminating in a proof of Zorn's Lemma and a discussion of some of its applications. The author then develops the notions of transfinite induction and descriptive set theory, with applications to the theory of real functions. The final part of the book presents the tools of 'modern' set theory: Martin's Axiom, the Diamond Principle, and elements of forcing. Written primarily as a text for beginning graduate or advanced level undergraduate students, this book should also interest researchers wanting to learn more about set theoretical techniques applicable to their fields. |
Beschreibung: | 1 online resource (xi, 236 pages) |
Bibliographie: | Includes bibliographical references (pages 225-227) and index. |
ISBN: | 9781139173131 1139173138 9781107089068 1107089069 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn817922080 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121114s1997 enk ob 001 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d IDEBK |d N$T |d E7B |d OCLCF |d OCLCQ |d AGLDB |d YDX |d OCLCO |d OCLCQ |d UAB |d OCLCQ |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d OCLCQ |d AJS |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 852896277 | ||
020 | |a 9781139173131 |q (electronic bk.) | ||
020 | |a 1139173138 |q (electronic bk.) | ||
020 | |a 9781107089068 |q (electronic bk.) | ||
020 | |a 1107089069 |q (electronic bk.) | ||
020 | |z 0521594413 | ||
020 | |z 9780521594417 | ||
020 | |z 0521594650 | ||
020 | |z 9780521594653 | ||
035 | |a (OCoLC)817922080 |z (OCoLC)852896277 | ||
050 | 4 | |a QA248 |b .C475 1997eb | |
072 | 7 | |a MAT |x 028000 |2 bisacsh | |
082 | 7 | |a 511.3/22 |2 22 | |
084 | |a SK 150 |2 rvk | ||
084 | |a SK 155 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Ciesielski, Krzysztof, |d 1957- |1 https://id.oclc.org/worldcat/entity/E39PCjFc6FrwMYRdM6FTmMJfVP |0 http://id.loc.gov/authorities/names/n93095391 | |
245 | 1 | 0 | |a Set theory for the working mathematician / |c Krzysztof Ciesielski. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c ©1997. | ||
300 | |a 1 online resource (xi, 236 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 39 | |
504 | |a Includes bibliographical references (pages 225-227) and index. | ||
505 | 0 | 0 | |t Basics of set theory -- |t Axiomatic set theory -- |t Why axiomatic set theory? -- |t The language and the basic axioms -- |t Relations, functions, and Cartesian product -- |t Relations and the axiom of choice -- |t Functions and the replacement scheme axiom -- |t Generalized union, intersection, and Cartesian product -- |t Partial- and linear-order relations -- |t Natural numbers, integers, and real numbers -- |t Natural numbers -- |t Integers and rational numbers -- |t Real numbers -- |t Fundamental tools of set theory -- |t Well orderings and transfinite induction -- |t Well-ordered sets and the axiom of foundation -- |t Ordinal numbers -- |t Definitions by transfinite induction -- |t Zorn's lemma in algebra, analysis, and topology -- |t Cardinal numbers -- |t Cardinal numbers and the continuum hypothesis -- |t Cardinal arithmetic -- |t Cofinality -- |t The power of recursive definitions -- |t Subsets of R[superscript n] -- |t Strange subsets of R[superscript n] and the diagonalization argument -- |t Closed sets and Borel sets -- |t Lebesgue-measurable sets and sets with the Baire property -- |t Strange real functions -- |t Measurable and nonmeasurable functions -- |t Darboux functions -- |t Additive functions and Hamel bases -- |t Symmetrically discontinuous functions -- |t When induction is too short -- |t Martin's axiom -- |t Rasiowa-Sikorski lemma -- |t Martin's axiom -- |t Suslin hypothesis and diamond principle -- |t Forcing -- |t Elements of logic and other forcing preliminaries -- |t Forcing method and a model for [not sign]CH -- |t Model for CH and [diamonds suit symbol] -- |t Product lemma and Cohen model -- |t Model for MA+[not sign]CH. |
588 | 0 | |a Print version record. | |
520 | |a This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory, culminating in a proof of Zorn's Lemma and a discussion of some of its applications. The author then develops the notions of transfinite induction and descriptive set theory, with applications to the theory of real functions. The final part of the book presents the tools of 'modern' set theory: Martin's Axiom, the Diamond Principle, and elements of forcing. Written primarily as a text for beginning graduate or advanced level undergraduate students, this book should also interest researchers wanting to learn more about set theoretical techniques applicable to their fields. | ||
650 | 0 | |a Set theory. |0 http://id.loc.gov/authorities/subjects/sh85120387 | |
650 | 6 | |a Théorie des ensembles. | |
650 | 7 | |a MATHEMATICS |x Set Theory. |2 bisacsh | |
650 | 7 | |a Set theory |2 fast | |
650 | 7 | |a Mengenlehre |2 gnd |0 http://d-nb.info/gnd/4074715-3 | |
650 | 7 | |a TEORIA DOS CONJUNTOS. |2 larpcal | |
758 | |i has work: |a Set theory for the working mathematician (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG3YXb99wMRxgjTwc73Vcq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Ciesielski, Krzysztof, 1957- |t Set theory for the working mathematician. |d Cambridge ; New York : Cambridge University Press, ©1997 |z 0521594413 |w (DLC) 97010533 |w (OCoLC)36621835 |
830 | 0 | |a London Mathematical Society student texts ; |v 39. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570383 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH22950145 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26478707 | ||
938 | |a ebrary |b EBRY |n ebr10733667 | ||
938 | |a EBSCOhost |b EBSC |n 570383 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25836201 | ||
938 | |a YBP Library Services |b YANK |n 9249093 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn817922080 |
---|---|
_version_ | 1816882214023987200 |
adam_text | |
any_adam_object | |
author | Ciesielski, Krzysztof, 1957- |
author_GND | http://id.loc.gov/authorities/names/n93095391 |
author_facet | Ciesielski, Krzysztof, 1957- |
author_role | |
author_sort | Ciesielski, Krzysztof, 1957- |
author_variant | k c kc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 .C475 1997eb |
callnumber-search | QA248 .C475 1997eb |
callnumber-sort | QA 3248 C475 41997EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 150 SK 155 |
collection | ZDB-4-EBA |
contents | Basics of set theory -- Axiomatic set theory -- Why axiomatic set theory? -- The language and the basic axioms -- Relations, functions, and Cartesian product -- Relations and the axiom of choice -- Functions and the replacement scheme axiom -- Generalized union, intersection, and Cartesian product -- Partial- and linear-order relations -- Natural numbers, integers, and real numbers -- Natural numbers -- Integers and rational numbers -- Real numbers -- Fundamental tools of set theory -- Well orderings and transfinite induction -- Well-ordered sets and the axiom of foundation -- Ordinal numbers -- Definitions by transfinite induction -- Zorn's lemma in algebra, analysis, and topology -- Cardinal numbers -- Cardinal numbers and the continuum hypothesis -- Cardinal arithmetic -- Cofinality -- The power of recursive definitions -- Subsets of R[superscript n] -- Strange subsets of R[superscript n] and the diagonalization argument -- Closed sets and Borel sets -- Lebesgue-measurable sets and sets with the Baire property -- Strange real functions -- Measurable and nonmeasurable functions -- Darboux functions -- Additive functions and Hamel bases -- Symmetrically discontinuous functions -- When induction is too short -- Martin's axiom -- Rasiowa-Sikorski lemma -- Suslin hypothesis and diamond principle -- Forcing -- Elements of logic and other forcing preliminaries -- Forcing method and a model for [not sign]CH -- Model for CH and [diamonds suit symbol] -- Product lemma and Cohen model -- Model for MA+[not sign]CH. |
ctrlnum | (OCoLC)817922080 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05451cam a2200649 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn817922080</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121114s1997 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">IDEBK</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">YDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">852896277</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139173131</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139173138</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089068</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107089069</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521594413</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521594417</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521594650</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521594653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)817922080</subfield><subfield code="z">(OCoLC)852896277</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA248</subfield><subfield code="b">.C475 1997eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">028000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 150</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 155</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ciesielski, Krzysztof,</subfield><subfield code="d">1957-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjFc6FrwMYRdM6FTmMJfVP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n93095391</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Set theory for the working mathematician /</subfield><subfield code="c">Krzysztof Ciesielski.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">©1997.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 236 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">39</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 225-227) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2="0"><subfield code="t">Basics of set theory --</subfield><subfield code="t">Axiomatic set theory --</subfield><subfield code="t">Why axiomatic set theory? --</subfield><subfield code="t">The language and the basic axioms --</subfield><subfield code="t">Relations, functions, and Cartesian product --</subfield><subfield code="t">Relations and the axiom of choice --</subfield><subfield code="t">Functions and the replacement scheme axiom --</subfield><subfield code="t">Generalized union, intersection, and Cartesian product --</subfield><subfield code="t">Partial- and linear-order relations --</subfield><subfield code="t">Natural numbers, integers, and real numbers --</subfield><subfield code="t">Natural numbers --</subfield><subfield code="t">Integers and rational numbers --</subfield><subfield code="t">Real numbers --</subfield><subfield code="t">Fundamental tools of set theory --</subfield><subfield code="t">Well orderings and transfinite induction --</subfield><subfield code="t">Well-ordered sets and the axiom of foundation --</subfield><subfield code="t">Ordinal numbers --</subfield><subfield code="t">Definitions by transfinite induction --</subfield><subfield code="t">Zorn's lemma in algebra, analysis, and topology --</subfield><subfield code="t">Cardinal numbers --</subfield><subfield code="t">Cardinal numbers and the continuum hypothesis --</subfield><subfield code="t">Cardinal arithmetic --</subfield><subfield code="t">Cofinality --</subfield><subfield code="t">The power of recursive definitions --</subfield><subfield code="t">Subsets of R[superscript n] --</subfield><subfield code="t">Strange subsets of R[superscript n] and the diagonalization argument --</subfield><subfield code="t">Closed sets and Borel sets --</subfield><subfield code="t">Lebesgue-measurable sets and sets with the Baire property --</subfield><subfield code="t">Strange real functions --</subfield><subfield code="t">Measurable and nonmeasurable functions --</subfield><subfield code="t">Darboux functions --</subfield><subfield code="t">Additive functions and Hamel bases --</subfield><subfield code="t">Symmetrically discontinuous functions --</subfield><subfield code="t">When induction is too short --</subfield><subfield code="t">Martin's axiom --</subfield><subfield code="t">Rasiowa-Sikorski lemma --</subfield><subfield code="t">Martin's axiom --</subfield><subfield code="t">Suslin hypothesis and diamond principle --</subfield><subfield code="t">Forcing --</subfield><subfield code="t">Elements of logic and other forcing preliminaries --</subfield><subfield code="t">Forcing method and a model for [not sign]CH --</subfield><subfield code="t">Model for CH and [diamonds suit symbol] --</subfield><subfield code="t">Product lemma and Cohen model --</subfield><subfield code="t">Model for MA+[not sign]CH.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory, culminating in a proof of Zorn's Lemma and a discussion of some of its applications. The author then develops the notions of transfinite induction and descriptive set theory, with applications to the theory of real functions. The final part of the book presents the tools of 'modern' set theory: Martin's Axiom, the Diamond Principle, and elements of forcing. Written primarily as a text for beginning graduate or advanced level undergraduate students, this book should also interest researchers wanting to learn more about set theoretical techniques applicable to their fields.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Set theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85120387</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des ensembles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Set Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Set theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mengenlehre</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4074715-3</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TEORIA DOS CONJUNTOS.</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Set theory for the working mathematician (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG3YXb99wMRxgjTwc73Vcq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ciesielski, Krzysztof, 1957-</subfield><subfield code="t">Set theory for the working mathematician.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, ©1997</subfield><subfield code="z">0521594413</subfield><subfield code="w">(DLC) 97010533</subfield><subfield code="w">(OCoLC)36621835</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">39.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570383</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH22950145</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26478707</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10733667</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">570383</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25836201</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9249093</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn817922080 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:03Z |
institution | BVB |
isbn | 9781139173131 1139173138 9781107089068 1107089069 |
language | English |
oclc_num | 817922080 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 236 pages) |
psigel | ZDB-4-EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Ciesielski, Krzysztof, 1957- https://id.oclc.org/worldcat/entity/E39PCjFc6FrwMYRdM6FTmMJfVP http://id.loc.gov/authorities/names/n93095391 Set theory for the working mathematician / Krzysztof Ciesielski. Cambridge ; New York : Cambridge University Press, ©1997. 1 online resource (xi, 236 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 39 Includes bibliographical references (pages 225-227) and index. Basics of set theory -- Axiomatic set theory -- Why axiomatic set theory? -- The language and the basic axioms -- Relations, functions, and Cartesian product -- Relations and the axiom of choice -- Functions and the replacement scheme axiom -- Generalized union, intersection, and Cartesian product -- Partial- and linear-order relations -- Natural numbers, integers, and real numbers -- Natural numbers -- Integers and rational numbers -- Real numbers -- Fundamental tools of set theory -- Well orderings and transfinite induction -- Well-ordered sets and the axiom of foundation -- Ordinal numbers -- Definitions by transfinite induction -- Zorn's lemma in algebra, analysis, and topology -- Cardinal numbers -- Cardinal numbers and the continuum hypothesis -- Cardinal arithmetic -- Cofinality -- The power of recursive definitions -- Subsets of R[superscript n] -- Strange subsets of R[superscript n] and the diagonalization argument -- Closed sets and Borel sets -- Lebesgue-measurable sets and sets with the Baire property -- Strange real functions -- Measurable and nonmeasurable functions -- Darboux functions -- Additive functions and Hamel bases -- Symmetrically discontinuous functions -- When induction is too short -- Martin's axiom -- Rasiowa-Sikorski lemma -- Martin's axiom -- Suslin hypothesis and diamond principle -- Forcing -- Elements of logic and other forcing preliminaries -- Forcing method and a model for [not sign]CH -- Model for CH and [diamonds suit symbol] -- Product lemma and Cohen model -- Model for MA+[not sign]CH. Print version record. This text presents methods of modern set theory as tools that can be usefully applied to other areas of mathematics. The author describes numerous applications in abstract geometry and real analysis and, in some cases, in topology and algebra. The book begins with a tour of the basics of set theory, culminating in a proof of Zorn's Lemma and a discussion of some of its applications. The author then develops the notions of transfinite induction and descriptive set theory, with applications to the theory of real functions. The final part of the book presents the tools of 'modern' set theory: Martin's Axiom, the Diamond Principle, and elements of forcing. Written primarily as a text for beginning graduate or advanced level undergraduate students, this book should also interest researchers wanting to learn more about set theoretical techniques applicable to their fields. Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Théorie des ensembles. MATHEMATICS Set Theory. bisacsh Set theory fast Mengenlehre gnd http://d-nb.info/gnd/4074715-3 TEORIA DOS CONJUNTOS. larpcal has work: Set theory for the working mathematician (Text) https://id.oclc.org/worldcat/entity/E39PCG3YXb99wMRxgjTwc73Vcq https://id.oclc.org/worldcat/ontology/hasWork Print version: Ciesielski, Krzysztof, 1957- Set theory for the working mathematician. Cambridge ; New York : Cambridge University Press, ©1997 0521594413 (DLC) 97010533 (OCoLC)36621835 London Mathematical Society student texts ; 39. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570383 Volltext |
spellingShingle | Ciesielski, Krzysztof, 1957- Set theory for the working mathematician / London Mathematical Society student texts ; Basics of set theory -- Axiomatic set theory -- Why axiomatic set theory? -- The language and the basic axioms -- Relations, functions, and Cartesian product -- Relations and the axiom of choice -- Functions and the replacement scheme axiom -- Generalized union, intersection, and Cartesian product -- Partial- and linear-order relations -- Natural numbers, integers, and real numbers -- Natural numbers -- Integers and rational numbers -- Real numbers -- Fundamental tools of set theory -- Well orderings and transfinite induction -- Well-ordered sets and the axiom of foundation -- Ordinal numbers -- Definitions by transfinite induction -- Zorn's lemma in algebra, analysis, and topology -- Cardinal numbers -- Cardinal numbers and the continuum hypothesis -- Cardinal arithmetic -- Cofinality -- The power of recursive definitions -- Subsets of R[superscript n] -- Strange subsets of R[superscript n] and the diagonalization argument -- Closed sets and Borel sets -- Lebesgue-measurable sets and sets with the Baire property -- Strange real functions -- Measurable and nonmeasurable functions -- Darboux functions -- Additive functions and Hamel bases -- Symmetrically discontinuous functions -- When induction is too short -- Martin's axiom -- Rasiowa-Sikorski lemma -- Suslin hypothesis and diamond principle -- Forcing -- Elements of logic and other forcing preliminaries -- Forcing method and a model for [not sign]CH -- Model for CH and [diamonds suit symbol] -- Product lemma and Cohen model -- Model for MA+[not sign]CH. Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Théorie des ensembles. MATHEMATICS Set Theory. bisacsh Set theory fast Mengenlehre gnd http://d-nb.info/gnd/4074715-3 TEORIA DOS CONJUNTOS. larpcal |
subject_GND | http://id.loc.gov/authorities/subjects/sh85120387 http://d-nb.info/gnd/4074715-3 |
title | Set theory for the working mathematician / |
title_alt | Basics of set theory -- Axiomatic set theory -- Why axiomatic set theory? -- The language and the basic axioms -- Relations, functions, and Cartesian product -- Relations and the axiom of choice -- Functions and the replacement scheme axiom -- Generalized union, intersection, and Cartesian product -- Partial- and linear-order relations -- Natural numbers, integers, and real numbers -- Natural numbers -- Integers and rational numbers -- Real numbers -- Fundamental tools of set theory -- Well orderings and transfinite induction -- Well-ordered sets and the axiom of foundation -- Ordinal numbers -- Definitions by transfinite induction -- Zorn's lemma in algebra, analysis, and topology -- Cardinal numbers -- Cardinal numbers and the continuum hypothesis -- Cardinal arithmetic -- Cofinality -- The power of recursive definitions -- Subsets of R[superscript n] -- Strange subsets of R[superscript n] and the diagonalization argument -- Closed sets and Borel sets -- Lebesgue-measurable sets and sets with the Baire property -- Strange real functions -- Measurable and nonmeasurable functions -- Darboux functions -- Additive functions and Hamel bases -- Symmetrically discontinuous functions -- When induction is too short -- Martin's axiom -- Rasiowa-Sikorski lemma -- Suslin hypothesis and diamond principle -- Forcing -- Elements of logic and other forcing preliminaries -- Forcing method and a model for [not sign]CH -- Model for CH and [diamonds suit symbol] -- Product lemma and Cohen model -- Model for MA+[not sign]CH. |
title_auth | Set theory for the working mathematician / |
title_exact_search | Set theory for the working mathematician / |
title_full | Set theory for the working mathematician / Krzysztof Ciesielski. |
title_fullStr | Set theory for the working mathematician / Krzysztof Ciesielski. |
title_full_unstemmed | Set theory for the working mathematician / Krzysztof Ciesielski. |
title_short | Set theory for the working mathematician / |
title_sort | set theory for the working mathematician |
topic | Set theory. http://id.loc.gov/authorities/subjects/sh85120387 Théorie des ensembles. MATHEMATICS Set Theory. bisacsh Set theory fast Mengenlehre gnd http://d-nb.info/gnd/4074715-3 TEORIA DOS CONJUNTOS. larpcal |
topic_facet | Set theory. Théorie des ensembles. MATHEMATICS Set Theory. Set theory Mengenlehre TEORIA DOS CONJUNTOS. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570383 |
work_keys_str_mv | AT ciesielskikrzysztof settheoryfortheworkingmathematician |