Harmonic maps, loop groups, and integrable systems /:
Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
1997.
|
Schriftenreihe: | London Mathematical Society student texts ;
38. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists. |
Beschreibung: | 1 online resource (xiii, 194 pages) |
Bibliographie: | Includes bibliographical references (pages 187-192) and index. |
ISBN: | 9781139174848 1139174843 9781107089006 110708900X |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn817921933 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121114s1997 enk ob 001 0 eng d | ||
040 | |a CAMBR |b eng |e pn |c CAMBR |d N$T |d IDEBK |d OCLCF |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d HEBIS |d OCLCO |d UAB |d VTS |d REC |d OCLCO |d STF |d AU@ |d OCLCO |d M8D |d UKAHL |d OCLCQ |d OCLCO |d AJS |d SFB |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 846494676 | ||
020 | |a 9781139174848 |q (electronic bk.) | ||
020 | |a 1139174843 |q (electronic bk.) | ||
020 | |a 9781107089006 |q (electronic bk.) | ||
020 | |a 110708900X |q (electronic bk.) | ||
020 | |z 0521580854 | ||
020 | |z 9780521580854 | ||
020 | |z 0521589320 | ||
020 | |z 9780521589321 | ||
035 | |a (OCoLC)817921933 |z (OCoLC)846494676 | ||
050 | 4 | |a QA614.73 |b .G84 1997eb | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514.74 |2 22 | |
084 | |a 31.55 |2 bcl | ||
084 | |a 31.30 |2 bcl | ||
084 | |a SK 370 |2 rvk | ||
049 | |a MAIN | ||
100 | 1 | |a Guest, Martin A. | |
245 | 1 | 0 | |a Harmonic maps, loop groups, and integrable systems / |c Martin A. Guest. |
260 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 1997. | ||
300 | |a 1 online resource (xiii, 194 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society student texts ; |v 38 | |
504 | |a Includes bibliographical references (pages 187-192) and index. | ||
588 | 0 | |a Print version record. | |
520 | |a Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists. | ||
505 | 0 | |a pt. I. One-dimensional integrable systems -- pt. II. Two-dimensional integrable systems -- pt. III. One-dimensional and two-dimensional integrable systems. | |
650 | 0 | |a Harmonic maps. |0 http://id.loc.gov/authorities/subjects/sh85058944 | |
650 | 0 | |a Loops (Group theory) |0 http://id.loc.gov/authorities/subjects/sh85078321 | |
650 | 0 | |a Differential equations. |0 http://id.loc.gov/authorities/subjects/sh85037890 | |
650 | 6 | |a Applications harmoniques. | |
650 | 6 | |a Lacets (Théorie des groupes) | |
650 | 6 | |a Équations différentielles. | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Differential equations |2 fast | |
650 | 7 | |a Harmonic maps |2 fast | |
650 | 7 | |a Loops (Group theory) |2 fast | |
650 | 7 | |a Loop |2 gnd |0 http://d-nb.info/gnd/4168153-8 | |
650 | 7 | |a Harmonische Abbildung |2 gnd |0 http://d-nb.info/gnd/4023452-6 | |
650 | 7 | |a Integrables System |2 gnd |0 http://d-nb.info/gnd/4114032-1 | |
650 | 1 | 7 | |a Harmonische ruimten. |2 gtt |
650 | 1 | 7 | |a Groepen (wiskunde) |2 gtt |
776 | 0 | 8 | |i Print version: |a Guest, Martin A. |t Harmonic maps, loop groups, and integrable systems. |d Cambridge ; New York : Cambridge University Press, 1997 |z 0521580854 |w (DLC) 96038837 |w (OCoLC)35627559 |
830 | 0 | |a London Mathematical Society student texts ; |v 38. |0 http://id.loc.gov/authorities/names/n84727069 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570405 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH22950280 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26478701 | ||
938 | |a EBSCOhost |b EBSC |n 570405 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis25773408 | ||
938 | |a YBP Library Services |b YANK |n 9249231 | ||
938 | |a YBP Library Services |b YANK |n 10734779 | ||
938 | |a YBP Library Services |b YANK |n 10762251 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn817921933 |
---|---|
_version_ | 1816882214001967104 |
adam_text | |
any_adam_object | |
author | Guest, Martin A. |
author_facet | Guest, Martin A. |
author_role | |
author_sort | Guest, Martin A. |
author_variant | m a g ma mag |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.73 .G84 1997eb |
callnumber-search | QA614.73 .G84 1997eb |
callnumber-sort | QA 3614.73 G84 41997EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 |
collection | ZDB-4-EBA |
contents | pt. I. One-dimensional integrable systems -- pt. II. Two-dimensional integrable systems -- pt. III. One-dimensional and two-dimensional integrable systems. |
ctrlnum | (OCoLC)817921933 |
dewey-full | 514.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.74 |
dewey-search | 514.74 |
dewey-sort | 3514.74 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04214cam a2200769 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn817921933</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121114s1997 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CAMBR</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">CAMBR</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">VTS</subfield><subfield code="d">REC</subfield><subfield code="d">OCLCO</subfield><subfield code="d">STF</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">M8D</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">AJS</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">846494676</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139174848</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139174843</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107089006</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">110708900X</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521580854</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521580854</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521589320</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521589321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)817921933</subfield><subfield code="z">(OCoLC)846494676</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA614.73</subfield><subfield code="b">.G84 1997eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514.74</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.55</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.30</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guest, Martin A.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic maps, loop groups, and integrable systems /</subfield><subfield code="c">Martin A. Guest.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">1997.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xiii, 194 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">38</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 187-192) and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">pt. I. One-dimensional integrable systems -- pt. II. Two-dimensional integrable systems -- pt. III. One-dimensional and two-dimensional integrable systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Harmonic maps.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85058944</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Loops (Group theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85078321</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037890</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Applications harmoniques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Lacets (Théorie des groupes)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic maps</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Loops (Group theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Loop</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4168153-8</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonische Abbildung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4023452-6</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Integrables System</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4114032-1</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Harmonische ruimten.</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1="1" ind2="7"><subfield code="a">Groepen (wiskunde)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Guest, Martin A.</subfield><subfield code="t">Harmonic maps, loop groups, and integrable systems.</subfield><subfield code="d">Cambridge ; New York : Cambridge University Press, 1997</subfield><subfield code="z">0521580854</subfield><subfield code="w">(DLC) 96038837</subfield><subfield code="w">(OCoLC)35627559</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society student texts ;</subfield><subfield code="v">38.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84727069</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570405</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH22950280</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26478701</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">570405</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis25773408</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9249231</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10734779</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10762251</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn817921933 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:03Z |
institution | BVB |
isbn | 9781139174848 1139174843 9781107089006 110708900X |
language | English |
oclc_num | 817921933 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xiii, 194 pages) |
psigel | ZDB-4-EBA |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society student texts ; |
series2 | London Mathematical Society student texts ; |
spelling | Guest, Martin A. Harmonic maps, loop groups, and integrable systems / Martin A. Guest. Cambridge ; New York : Cambridge University Press, 1997. 1 online resource (xiii, 194 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society student texts ; 38 Includes bibliographical references (pages 187-192) and index. Print version record. Harmonic maps are generalisations of the concept of geodesics. They encompass many fundamental examples in differential geometry and have recently become of widespread use in many areas of mathematics and mathematical physics. This is an accessible introduction to some of the fundamental connections between differential geometry, Lie groups, and integrable Hamiltonian systems. The specific goal of the book is to show how the theory of loop groups can be used to study harmonic maps. By concentrating on the main ideas and examples, the author leads up to topics of current research. The book is suitable for students who are beginning to study manifolds and Lie groups, and should be of interest both to mathematicians and to theoretical physicists. pt. I. One-dimensional integrable systems -- pt. II. Two-dimensional integrable systems -- pt. III. One-dimensional and two-dimensional integrable systems. Harmonic maps. http://id.loc.gov/authorities/subjects/sh85058944 Loops (Group theory) http://id.loc.gov/authorities/subjects/sh85078321 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Applications harmoniques. Lacets (Théorie des groupes) Équations différentielles. MATHEMATICS Topology. bisacsh Differential equations fast Harmonic maps fast Loops (Group theory) fast Loop gnd http://d-nb.info/gnd/4168153-8 Harmonische Abbildung gnd http://d-nb.info/gnd/4023452-6 Integrables System gnd http://d-nb.info/gnd/4114032-1 Harmonische ruimten. gtt Groepen (wiskunde) gtt Print version: Guest, Martin A. Harmonic maps, loop groups, and integrable systems. Cambridge ; New York : Cambridge University Press, 1997 0521580854 (DLC) 96038837 (OCoLC)35627559 London Mathematical Society student texts ; 38. http://id.loc.gov/authorities/names/n84727069 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570405 Volltext |
spellingShingle | Guest, Martin A. Harmonic maps, loop groups, and integrable systems / London Mathematical Society student texts ; pt. I. One-dimensional integrable systems -- pt. II. Two-dimensional integrable systems -- pt. III. One-dimensional and two-dimensional integrable systems. Harmonic maps. http://id.loc.gov/authorities/subjects/sh85058944 Loops (Group theory) http://id.loc.gov/authorities/subjects/sh85078321 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Applications harmoniques. Lacets (Théorie des groupes) Équations différentielles. MATHEMATICS Topology. bisacsh Differential equations fast Harmonic maps fast Loops (Group theory) fast Loop gnd http://d-nb.info/gnd/4168153-8 Harmonische Abbildung gnd http://d-nb.info/gnd/4023452-6 Integrables System gnd http://d-nb.info/gnd/4114032-1 Harmonische ruimten. gtt Groepen (wiskunde) gtt |
subject_GND | http://id.loc.gov/authorities/subjects/sh85058944 http://id.loc.gov/authorities/subjects/sh85078321 http://id.loc.gov/authorities/subjects/sh85037890 http://d-nb.info/gnd/4168153-8 http://d-nb.info/gnd/4023452-6 http://d-nb.info/gnd/4114032-1 |
title | Harmonic maps, loop groups, and integrable systems / |
title_auth | Harmonic maps, loop groups, and integrable systems / |
title_exact_search | Harmonic maps, loop groups, and integrable systems / |
title_full | Harmonic maps, loop groups, and integrable systems / Martin A. Guest. |
title_fullStr | Harmonic maps, loop groups, and integrable systems / Martin A. Guest. |
title_full_unstemmed | Harmonic maps, loop groups, and integrable systems / Martin A. Guest. |
title_short | Harmonic maps, loop groups, and integrable systems / |
title_sort | harmonic maps loop groups and integrable systems |
topic | Harmonic maps. http://id.loc.gov/authorities/subjects/sh85058944 Loops (Group theory) http://id.loc.gov/authorities/subjects/sh85078321 Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Applications harmoniques. Lacets (Théorie des groupes) Équations différentielles. MATHEMATICS Topology. bisacsh Differential equations fast Harmonic maps fast Loops (Group theory) fast Loop gnd http://d-nb.info/gnd/4168153-8 Harmonische Abbildung gnd http://d-nb.info/gnd/4023452-6 Integrables System gnd http://d-nb.info/gnd/4114032-1 Harmonische ruimten. gtt Groepen (wiskunde) gtt |
topic_facet | Harmonic maps. Loops (Group theory) Differential equations. Applications harmoniques. Lacets (Théorie des groupes) Équations différentielles. MATHEMATICS Topology. Differential equations Harmonic maps Loop Harmonische Abbildung Integrables System Harmonische ruimten. Groepen (wiskunde) |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=570405 |
work_keys_str_mv | AT guestmartina harmonicmapsloopgroupsandintegrablesystems |