Fracture mechanics of electromagnetic materials :: nonlinear field theory and applications /
Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled mag...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London :
Imperial College Press,
2013.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource. |
Beschreibung: | 1 online resource |
ISBN: | 9781848166646 1848166648 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn817581654 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 121113s2012 enka o 000 0 eng d | ||
040 | |a HKP |b eng |e pn |c HKP |d OCLCO |d YDXCP |d N$T |d IDEBK |d E7B |d STF |d OCLCF |d OCLCQ |d VGM |d OCLCA |d OCLCQ |d MERUC |d OCLCQ |d ZCU |d NJR |d OCLCQ |d VTS |d ICG |d OCLCQ |d TKN |d DKC |d OCLCQ |d M8D |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
020 | |a 9781848166646 |q (electronic bk.) | ||
020 | |a 1848166648 |q (electronic bk.) | ||
020 | |z 184816663X |q (print) | ||
020 | |z 9781848166639 |q (print) | ||
035 | |a (OCoLC)817581654 | ||
050 | 4 | |a TA409 |b .C434 2013eb | |
072 | 7 | |a TEC |x 013000 |2 bisacsh | |
082 | 7 | |a 620.1/126 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Chen, Xiaohong. | |
245 | 1 | 0 | |a Fracture mechanics of electromagnetic materials : |b nonlinear field theory and applications / |c Xiaohong Chen, Yiu-Wing Mai. |
260 | |a London : |b Imperial College Press, |c 2013. | ||
300 | |a 1 online resource | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
505 | 0 | |a Ch. 1. Fundamentals of fracture mechanics. 1.1. Historical perspective. 1.2. Stress Intensity Factors (SIF). 1.3. Energy Release Rate (ERR). 1.4. J-integral. 1.5. Dynamic fracture. 1.6. Viscoelastic fracture. 1.7. Essential Work of Fracture (EWF). 1.8. Configuration force (material force) method. 1.9. Cohesive zone and virtual internal bond models -- ch. 2. Elements of electrodynamics of continua. 2.1. Notations. 2.2. Maxwell equations. 2.3. Balance equations of mass, momentum, moment of momentum, and energy. 2.4. Constitutive relations. 2.5. Linearized theory -- ch. 3. Introduction to thermoviscoelasticity. 3.1. Thermoelasticity. 3.2. Viscoelasticity. 3.3. Coupled theory of thermoviscoelasticity. 3.4. Thermoviscoelastic boundary-initial value problems -- ch. 4. Overview on fracture of electromagnetic materials. 4.1. Introduction. 4.2. Basic field equations. 4.3. General solution procedures. 4.4. Debates on crack-face boundary conditions. 4.5. Fracture criteria. 4.6. Experimental observations. 4.7. Nonlinear studies. 4.8. Status and prospects -- ch. 5. Crack driving force in electro-thermo-elastodynamic fracture. 5.1. Introduction. 5.2. Fundamental principles of thermodynamics. 5.3. Energy flux and dynamic contour integral. 5.4. Dynamic energy release rate serving as crack driving force. 5.5. Configuration force and energy-momentum tensor. 5.6. Coupled electromechanical jump/boundary conditions. 5.7. Asymptotic near-tip field solution. 5.8. Remarks -- ch. 6. Dynamic fracture mechanics of magneto-electro-thermo-elastic solids. 6.1. Introduction. 6.2. Thermodynamic formulation of fully coupled dynamic framework. 6.3. Stroh-type formalism for steady-state crack propagation under coupled magneto-electro-mechanical jump/boundary conditions. 6.4. Magneto-electro-elastostatic crack problem as a special case. 6.5. Summary -- ch. 7. Dynamic crack propagation in magneto-electro-elastic solids. 7.1. Introduction. 7.2. Shear horizontal surface waves. 7.3. Transient mode-III crack growth problem. 7.4. Integral transform, Wiener-Hopf technique, and Cagniard-de Hoop method. 7.5. Fundamental solutions for traction loading only. 7.6. Fundamental solutions for mixed loads. 7.7. Evaluation of dynamic energy release rate. 7.8. Influence of shear horizontal surface wave speed and crack tip velocity. | |
505 | 8 | |a Ch. 8. Fracture of functionally graded materials. 8.1. Introduction. 8.2. Formulation of boundary-initial value problems. 8.3. Basic solution techniques. 8.4. Fracture characterizing parameters. 8.5. Remarks -- ch. 9. Magneto-thermo-viscoelastic deformation and fracture. 9.1. Introduction. 9.2. Local balance equations for magnetic, thermal, and mechanical field quantities. 9.3. Free energy and entropy production inequality for memory-dependent magnetosensitive materials. 9.4. Coupled magneto-thermo-viscoelastic constitutive relations. 9.5. Generalized [symbol]-integral in nonlinear magneto-thermo-viscoelastic fracture. 9.6. Generalized plane crack problem and revisit of mode-III fracture of a magnetostrictive solid in a bias magnetic field -- ch. 10. Electro-thermo-viscoelastic deformation and fracture. 10.1. Introduction. 10.2. Local balance equations for electric, thermal, and mechanical field quantities. 10.3. Free energy and entropy production inequality for memory-dependent electrosensitive materials. 10.4. Coupled electro-thermo-viscoelastic constitutive relations. 10.5. Generalized [symbol]-integral in nonlinear electro-thermo-viscoelastic fracture. 10.6. Analogy between nonlinear magneto- and electro-thermo-viscoelastic constitutive and fracture theories. 10.7. Reduction to Dorfmann-Ogden nonlinear magneto- and electro-elasticity -- ch. 11. Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials. 11.1. Introduction. 11.2. Global energy balance equation and non-negative global dissipation requirement. 11.3. Hamiltonian density and thermodynamically admissible conditions. 11.4. Thermodynamically consistent time-dependent fracture criterion. 11.5. Generalized energy release rate versus bulk dissipation rate. 11.6. Local generalized [symbol]-integral versus global generalized [symbol]-integral. 11.7. Essential work of fracture versus nonessential work of fracture -- ch. 12. Nonlinear field theory of fracture mechanics for piezoelectric and ferroelectric materials. 12.1. Introduction. 12.2. Nonlinear field equations. 12.3. Thermodynamically consistent time-dependent fracture criterion. 12.4. Correlation with conventional fracture mechanics approaches -- ch. 13. Applications to fracture characterization. 13.1. Introduction. 13.2. Energy release rate method and its generalization. 13.3. J-R curve method and its generalization. 13.4. Essential work of fracture method and its extension. 13.5. Closure. | |
520 | |a Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource. | ||
650 | 0 | |a Fracture mechanics. |0 http://id.loc.gov/authorities/subjects/sh85051154 | |
650 | 0 | |a Magnetic materials. | |
650 | 0 | |a Nonlinear theories. |0 http://id.loc.gov/authorities/subjects/sh85092332 | |
650 | 6 | |a Mécanique de la rupture. | |
650 | 6 | |a Matériaux magnétiques. | |
650 | 6 | |a Théories non linéaires. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Fracture Mechanics. |2 bisacsh | |
650 | 7 | |a Fracture mechanics |2 fast | |
650 | 7 | |a Magnetic materials |2 fast | |
650 | 7 | |a Nonlinear theories |2 fast | |
700 | 1 | |a Mai, Y. W., |d 1946- |1 https://id.oclc.org/worldcat/entity/E39PBJjxtmBWYRtwtgHxrdHpyd |0 http://id.loc.gov/authorities/names/n85052202 | |
776 | 0 | 8 | |i Print version: |a Chen, Xiaohong. |t Fracture mechanics of electromagnetic materials : nonlinear field theory and applications. |d London : Imperial College Press, 2013 |z 9781848166639 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=504184 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10627516 | ||
938 | |a EBSCOhost |b EBSC |n 504184 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 416312 | ||
938 | |a YBP Library Services |b YANK |n 9930011 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn817581654 |
---|---|
_version_ | 1816882213740871680 |
adam_text | |
any_adam_object | |
author | Chen, Xiaohong |
author2 | Mai, Y. W., 1946- |
author2_role | |
author2_variant | y w m yw ywm |
author_GND | http://id.loc.gov/authorities/names/n85052202 |
author_facet | Chen, Xiaohong Mai, Y. W., 1946- |
author_role | |
author_sort | Chen, Xiaohong |
author_variant | x c xc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TA409 |
callnumber-raw | TA409 .C434 2013eb |
callnumber-search | TA409 .C434 2013eb |
callnumber-sort | TA 3409 C434 42013EB |
callnumber-subject | TA - General and Civil Engineering |
collection | ZDB-4-EBA |
contents | Ch. 1. Fundamentals of fracture mechanics. 1.1. Historical perspective. 1.2. Stress Intensity Factors (SIF). 1.3. Energy Release Rate (ERR). 1.4. J-integral. 1.5. Dynamic fracture. 1.6. Viscoelastic fracture. 1.7. Essential Work of Fracture (EWF). 1.8. Configuration force (material force) method. 1.9. Cohesive zone and virtual internal bond models -- ch. 2. Elements of electrodynamics of continua. 2.1. Notations. 2.2. Maxwell equations. 2.3. Balance equations of mass, momentum, moment of momentum, and energy. 2.4. Constitutive relations. 2.5. Linearized theory -- ch. 3. Introduction to thermoviscoelasticity. 3.1. Thermoelasticity. 3.2. Viscoelasticity. 3.3. Coupled theory of thermoviscoelasticity. 3.4. Thermoviscoelastic boundary-initial value problems -- ch. 4. Overview on fracture of electromagnetic materials. 4.1. Introduction. 4.2. Basic field equations. 4.3. General solution procedures. 4.4. Debates on crack-face boundary conditions. 4.5. Fracture criteria. 4.6. Experimental observations. 4.7. Nonlinear studies. 4.8. Status and prospects -- ch. 5. Crack driving force in electro-thermo-elastodynamic fracture. 5.1. Introduction. 5.2. Fundamental principles of thermodynamics. 5.3. Energy flux and dynamic contour integral. 5.4. Dynamic energy release rate serving as crack driving force. 5.5. Configuration force and energy-momentum tensor. 5.6. Coupled electromechanical jump/boundary conditions. 5.7. Asymptotic near-tip field solution. 5.8. Remarks -- ch. 6. Dynamic fracture mechanics of magneto-electro-thermo-elastic solids. 6.1. Introduction. 6.2. Thermodynamic formulation of fully coupled dynamic framework. 6.3. Stroh-type formalism for steady-state crack propagation under coupled magneto-electro-mechanical jump/boundary conditions. 6.4. Magneto-electro-elastostatic crack problem as a special case. 6.5. Summary -- ch. 7. Dynamic crack propagation in magneto-electro-elastic solids. 7.1. Introduction. 7.2. Shear horizontal surface waves. 7.3. Transient mode-III crack growth problem. 7.4. Integral transform, Wiener-Hopf technique, and Cagniard-de Hoop method. 7.5. Fundamental solutions for traction loading only. 7.6. Fundamental solutions for mixed loads. 7.7. Evaluation of dynamic energy release rate. 7.8. Influence of shear horizontal surface wave speed and crack tip velocity. Ch. 8. Fracture of functionally graded materials. 8.1. Introduction. 8.2. Formulation of boundary-initial value problems. 8.3. Basic solution techniques. 8.4. Fracture characterizing parameters. 8.5. Remarks -- ch. 9. Magneto-thermo-viscoelastic deformation and fracture. 9.1. Introduction. 9.2. Local balance equations for magnetic, thermal, and mechanical field quantities. 9.3. Free energy and entropy production inequality for memory-dependent magnetosensitive materials. 9.4. Coupled magneto-thermo-viscoelastic constitutive relations. 9.5. Generalized [symbol]-integral in nonlinear magneto-thermo-viscoelastic fracture. 9.6. Generalized plane crack problem and revisit of mode-III fracture of a magnetostrictive solid in a bias magnetic field -- ch. 10. Electro-thermo-viscoelastic deformation and fracture. 10.1. Introduction. 10.2. Local balance equations for electric, thermal, and mechanical field quantities. 10.3. Free energy and entropy production inequality for memory-dependent electrosensitive materials. 10.4. Coupled electro-thermo-viscoelastic constitutive relations. 10.5. Generalized [symbol]-integral in nonlinear electro-thermo-viscoelastic fracture. 10.6. Analogy between nonlinear magneto- and electro-thermo-viscoelastic constitutive and fracture theories. 10.7. Reduction to Dorfmann-Ogden nonlinear magneto- and electro-elasticity -- ch. 11. Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials. 11.1. Introduction. 11.2. Global energy balance equation and non-negative global dissipation requirement. 11.3. Hamiltonian density and thermodynamically admissible conditions. 11.4. Thermodynamically consistent time-dependent fracture criterion. 11.5. Generalized energy release rate versus bulk dissipation rate. 11.6. Local generalized [symbol]-integral versus global generalized [symbol]-integral. 11.7. Essential work of fracture versus nonessential work of fracture -- ch. 12. Nonlinear field theory of fracture mechanics for piezoelectric and ferroelectric materials. 12.1. Introduction. 12.2. Nonlinear field equations. 12.3. Thermodynamically consistent time-dependent fracture criterion. 12.4. Correlation with conventional fracture mechanics approaches -- ch. 13. Applications to fracture characterization. 13.1. Introduction. 13.2. Energy release rate method and its generalization. 13.3. J-R curve method and its generalization. 13.4. Essential work of fracture method and its extension. 13.5. Closure. |
ctrlnum | (OCoLC)817581654 |
dewey-full | 620.1/126 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/126 |
dewey-search | 620.1/126 |
dewey-sort | 3620.1 3126 |
dewey-tens | 620 - Engineering and allied operations |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08079cam a2200553 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn817581654</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">121113s2012 enka o 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">HKP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">HKP</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">IDEBK</subfield><subfield code="d">E7B</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VGM</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">MERUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">ICG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848166646</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848166648</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">184816663X</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781848166639</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)817581654</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA409</subfield><subfield code="b">.C434 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">013000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">620.1/126</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Xiaohong.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fracture mechanics of electromagnetic materials :</subfield><subfield code="b">nonlinear field theory and applications /</subfield><subfield code="c">Xiaohong Chen, Yiu-Wing Mai.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Ch. 1. Fundamentals of fracture mechanics. 1.1. Historical perspective. 1.2. Stress Intensity Factors (SIF). 1.3. Energy Release Rate (ERR). 1.4. J-integral. 1.5. Dynamic fracture. 1.6. Viscoelastic fracture. 1.7. Essential Work of Fracture (EWF). 1.8. Configuration force (material force) method. 1.9. Cohesive zone and virtual internal bond models -- ch. 2. Elements of electrodynamics of continua. 2.1. Notations. 2.2. Maxwell equations. 2.3. Balance equations of mass, momentum, moment of momentum, and energy. 2.4. Constitutive relations. 2.5. Linearized theory -- ch. 3. Introduction to thermoviscoelasticity. 3.1. Thermoelasticity. 3.2. Viscoelasticity. 3.3. Coupled theory of thermoviscoelasticity. 3.4. Thermoviscoelastic boundary-initial value problems -- ch. 4. Overview on fracture of electromagnetic materials. 4.1. Introduction. 4.2. Basic field equations. 4.3. General solution procedures. 4.4. Debates on crack-face boundary conditions. 4.5. Fracture criteria. 4.6. Experimental observations. 4.7. Nonlinear studies. 4.8. Status and prospects -- ch. 5. Crack driving force in electro-thermo-elastodynamic fracture. 5.1. Introduction. 5.2. Fundamental principles of thermodynamics. 5.3. Energy flux and dynamic contour integral. 5.4. Dynamic energy release rate serving as crack driving force. 5.5. Configuration force and energy-momentum tensor. 5.6. Coupled electromechanical jump/boundary conditions. 5.7. Asymptotic near-tip field solution. 5.8. Remarks -- ch. 6. Dynamic fracture mechanics of magneto-electro-thermo-elastic solids. 6.1. Introduction. 6.2. Thermodynamic formulation of fully coupled dynamic framework. 6.3. Stroh-type formalism for steady-state crack propagation under coupled magneto-electro-mechanical jump/boundary conditions. 6.4. Magneto-electro-elastostatic crack problem as a special case. 6.5. Summary -- ch. 7. Dynamic crack propagation in magneto-electro-elastic solids. 7.1. Introduction. 7.2. Shear horizontal surface waves. 7.3. Transient mode-III crack growth problem. 7.4. Integral transform, Wiener-Hopf technique, and Cagniard-de Hoop method. 7.5. Fundamental solutions for traction loading only. 7.6. Fundamental solutions for mixed loads. 7.7. Evaluation of dynamic energy release rate. 7.8. Influence of shear horizontal surface wave speed and crack tip velocity.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Ch. 8. Fracture of functionally graded materials. 8.1. Introduction. 8.2. Formulation of boundary-initial value problems. 8.3. Basic solution techniques. 8.4. Fracture characterizing parameters. 8.5. Remarks -- ch. 9. Magneto-thermo-viscoelastic deformation and fracture. 9.1. Introduction. 9.2. Local balance equations for magnetic, thermal, and mechanical field quantities. 9.3. Free energy and entropy production inequality for memory-dependent magnetosensitive materials. 9.4. Coupled magneto-thermo-viscoelastic constitutive relations. 9.5. Generalized [symbol]-integral in nonlinear magneto-thermo-viscoelastic fracture. 9.6. Generalized plane crack problem and revisit of mode-III fracture of a magnetostrictive solid in a bias magnetic field -- ch. 10. Electro-thermo-viscoelastic deformation and fracture. 10.1. Introduction. 10.2. Local balance equations for electric, thermal, and mechanical field quantities. 10.3. Free energy and entropy production inequality for memory-dependent electrosensitive materials. 10.4. Coupled electro-thermo-viscoelastic constitutive relations. 10.5. Generalized [symbol]-integral in nonlinear electro-thermo-viscoelastic fracture. 10.6. Analogy between nonlinear magneto- and electro-thermo-viscoelastic constitutive and fracture theories. 10.7. Reduction to Dorfmann-Ogden nonlinear magneto- and electro-elasticity -- ch. 11. Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials. 11.1. Introduction. 11.2. Global energy balance equation and non-negative global dissipation requirement. 11.3. Hamiltonian density and thermodynamically admissible conditions. 11.4. Thermodynamically consistent time-dependent fracture criterion. 11.5. Generalized energy release rate versus bulk dissipation rate. 11.6. Local generalized [symbol]-integral versus global generalized [symbol]-integral. 11.7. Essential work of fracture versus nonessential work of fracture -- ch. 12. Nonlinear field theory of fracture mechanics for piezoelectric and ferroelectric materials. 12.1. Introduction. 12.2. Nonlinear field equations. 12.3. Thermodynamically consistent time-dependent fracture criterion. 12.4. Correlation with conventional fracture mechanics approaches -- ch. 13. Applications to fracture characterization. 13.1. Introduction. 13.2. Energy release rate method and its generalization. 13.3. J-R curve method and its generalization. 13.4. Essential work of fracture method and its extension. 13.5. Closure.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fracture mechanics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051154</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Magnetic materials.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonlinear theories.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092332</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Mécanique de la rupture.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Matériaux magnétiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théories non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Fracture Mechanics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fracture mechanics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnetic materials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear theories</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mai, Y. W.,</subfield><subfield code="d">1946-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJjxtmBWYRtwtgHxrdHpyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85052202</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Chen, Xiaohong.</subfield><subfield code="t">Fracture mechanics of electromagnetic materials : nonlinear field theory and applications.</subfield><subfield code="d">London : Imperial College Press, 2013</subfield><subfield code="z">9781848166639</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=504184</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10627516</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">504184</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">416312</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9930011</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn817581654 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:02Z |
institution | BVB |
isbn | 9781848166646 1848166648 |
language | English |
oclc_num | 817581654 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Imperial College Press, |
record_format | marc |
spelling | Chen, Xiaohong. Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / Xiaohong Chen, Yiu-Wing Mai. London : Imperial College Press, 2013. 1 online resource text txt rdacontent computer c rdamedia online resource cr rdacarrier Ch. 1. Fundamentals of fracture mechanics. 1.1. Historical perspective. 1.2. Stress Intensity Factors (SIF). 1.3. Energy Release Rate (ERR). 1.4. J-integral. 1.5. Dynamic fracture. 1.6. Viscoelastic fracture. 1.7. Essential Work of Fracture (EWF). 1.8. Configuration force (material force) method. 1.9. Cohesive zone and virtual internal bond models -- ch. 2. Elements of electrodynamics of continua. 2.1. Notations. 2.2. Maxwell equations. 2.3. Balance equations of mass, momentum, moment of momentum, and energy. 2.4. Constitutive relations. 2.5. Linearized theory -- ch. 3. Introduction to thermoviscoelasticity. 3.1. Thermoelasticity. 3.2. Viscoelasticity. 3.3. Coupled theory of thermoviscoelasticity. 3.4. Thermoviscoelastic boundary-initial value problems -- ch. 4. Overview on fracture of electromagnetic materials. 4.1. Introduction. 4.2. Basic field equations. 4.3. General solution procedures. 4.4. Debates on crack-face boundary conditions. 4.5. Fracture criteria. 4.6. Experimental observations. 4.7. Nonlinear studies. 4.8. Status and prospects -- ch. 5. Crack driving force in electro-thermo-elastodynamic fracture. 5.1. Introduction. 5.2. Fundamental principles of thermodynamics. 5.3. Energy flux and dynamic contour integral. 5.4. Dynamic energy release rate serving as crack driving force. 5.5. Configuration force and energy-momentum tensor. 5.6. Coupled electromechanical jump/boundary conditions. 5.7. Asymptotic near-tip field solution. 5.8. Remarks -- ch. 6. Dynamic fracture mechanics of magneto-electro-thermo-elastic solids. 6.1. Introduction. 6.2. Thermodynamic formulation of fully coupled dynamic framework. 6.3. Stroh-type formalism for steady-state crack propagation under coupled magneto-electro-mechanical jump/boundary conditions. 6.4. Magneto-electro-elastostatic crack problem as a special case. 6.5. Summary -- ch. 7. Dynamic crack propagation in magneto-electro-elastic solids. 7.1. Introduction. 7.2. Shear horizontal surface waves. 7.3. Transient mode-III crack growth problem. 7.4. Integral transform, Wiener-Hopf technique, and Cagniard-de Hoop method. 7.5. Fundamental solutions for traction loading only. 7.6. Fundamental solutions for mixed loads. 7.7. Evaluation of dynamic energy release rate. 7.8. Influence of shear horizontal surface wave speed and crack tip velocity. Ch. 8. Fracture of functionally graded materials. 8.1. Introduction. 8.2. Formulation of boundary-initial value problems. 8.3. Basic solution techniques. 8.4. Fracture characterizing parameters. 8.5. Remarks -- ch. 9. Magneto-thermo-viscoelastic deformation and fracture. 9.1. Introduction. 9.2. Local balance equations for magnetic, thermal, and mechanical field quantities. 9.3. Free energy and entropy production inequality for memory-dependent magnetosensitive materials. 9.4. Coupled magneto-thermo-viscoelastic constitutive relations. 9.5. Generalized [symbol]-integral in nonlinear magneto-thermo-viscoelastic fracture. 9.6. Generalized plane crack problem and revisit of mode-III fracture of a magnetostrictive solid in a bias magnetic field -- ch. 10. Electro-thermo-viscoelastic deformation and fracture. 10.1. Introduction. 10.2. Local balance equations for electric, thermal, and mechanical field quantities. 10.3. Free energy and entropy production inequality for memory-dependent electrosensitive materials. 10.4. Coupled electro-thermo-viscoelastic constitutive relations. 10.5. Generalized [symbol]-integral in nonlinear electro-thermo-viscoelastic fracture. 10.6. Analogy between nonlinear magneto- and electro-thermo-viscoelastic constitutive and fracture theories. 10.7. Reduction to Dorfmann-Ogden nonlinear magneto- and electro-elasticity -- ch. 11. Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials. 11.1. Introduction. 11.2. Global energy balance equation and non-negative global dissipation requirement. 11.3. Hamiltonian density and thermodynamically admissible conditions. 11.4. Thermodynamically consistent time-dependent fracture criterion. 11.5. Generalized energy release rate versus bulk dissipation rate. 11.6. Local generalized [symbol]-integral versus global generalized [symbol]-integral. 11.7. Essential work of fracture versus nonessential work of fracture -- ch. 12. Nonlinear field theory of fracture mechanics for piezoelectric and ferroelectric materials. 12.1. Introduction. 12.2. Nonlinear field equations. 12.3. Thermodynamically consistent time-dependent fracture criterion. 12.4. Correlation with conventional fracture mechanics approaches -- ch. 13. Applications to fracture characterization. 13.1. Introduction. 13.2. Energy release rate method and its generalization. 13.3. J-R curve method and its generalization. 13.4. Essential work of fracture method and its extension. 13.5. Closure. Fracture Mechanics of Electromagnetic Materials provides a comprehensive overview of fracture mechanics of conservative and dissipative materials, as well as a general formulation of nonlinear field theory of fracture mechanics and a rigorous treatment of dynamic crack problems involving coupled magnetic, electric, thermal and mechanical field quantities. Thorough emphasis is placed on the physical interpretation of fundamental concepts, development of theoretical models and exploration of their applications to fracture characterization in the presence of magneto-electro-thermo-mechanical coupling and dissipative effects. Mechanical, aeronautical, civil, biomedical, electrical and electronic engineers interested in application of the principles of fracture mechanics to design analysis and durability evaluation of smart structures and devices will find this book an invaluable resource. Fracture mechanics. http://id.loc.gov/authorities/subjects/sh85051154 Magnetic materials. Nonlinear theories. http://id.loc.gov/authorities/subjects/sh85092332 Mécanique de la rupture. Matériaux magnétiques. Théories non linéaires. TECHNOLOGY & ENGINEERING Fracture Mechanics. bisacsh Fracture mechanics fast Magnetic materials fast Nonlinear theories fast Mai, Y. W., 1946- https://id.oclc.org/worldcat/entity/E39PBJjxtmBWYRtwtgHxrdHpyd http://id.loc.gov/authorities/names/n85052202 Print version: Chen, Xiaohong. Fracture mechanics of electromagnetic materials : nonlinear field theory and applications. London : Imperial College Press, 2013 9781848166639 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=504184 Volltext |
spellingShingle | Chen, Xiaohong Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / Ch. 1. Fundamentals of fracture mechanics. 1.1. Historical perspective. 1.2. Stress Intensity Factors (SIF). 1.3. Energy Release Rate (ERR). 1.4. J-integral. 1.5. Dynamic fracture. 1.6. Viscoelastic fracture. 1.7. Essential Work of Fracture (EWF). 1.8. Configuration force (material force) method. 1.9. Cohesive zone and virtual internal bond models -- ch. 2. Elements of electrodynamics of continua. 2.1. Notations. 2.2. Maxwell equations. 2.3. Balance equations of mass, momentum, moment of momentum, and energy. 2.4. Constitutive relations. 2.5. Linearized theory -- ch. 3. Introduction to thermoviscoelasticity. 3.1. Thermoelasticity. 3.2. Viscoelasticity. 3.3. Coupled theory of thermoviscoelasticity. 3.4. Thermoviscoelastic boundary-initial value problems -- ch. 4. Overview on fracture of electromagnetic materials. 4.1. Introduction. 4.2. Basic field equations. 4.3. General solution procedures. 4.4. Debates on crack-face boundary conditions. 4.5. Fracture criteria. 4.6. Experimental observations. 4.7. Nonlinear studies. 4.8. Status and prospects -- ch. 5. Crack driving force in electro-thermo-elastodynamic fracture. 5.1. Introduction. 5.2. Fundamental principles of thermodynamics. 5.3. Energy flux and dynamic contour integral. 5.4. Dynamic energy release rate serving as crack driving force. 5.5. Configuration force and energy-momentum tensor. 5.6. Coupled electromechanical jump/boundary conditions. 5.7. Asymptotic near-tip field solution. 5.8. Remarks -- ch. 6. Dynamic fracture mechanics of magneto-electro-thermo-elastic solids. 6.1. Introduction. 6.2. Thermodynamic formulation of fully coupled dynamic framework. 6.3. Stroh-type formalism for steady-state crack propagation under coupled magneto-electro-mechanical jump/boundary conditions. 6.4. Magneto-electro-elastostatic crack problem as a special case. 6.5. Summary -- ch. 7. Dynamic crack propagation in magneto-electro-elastic solids. 7.1. Introduction. 7.2. Shear horizontal surface waves. 7.3. Transient mode-III crack growth problem. 7.4. Integral transform, Wiener-Hopf technique, and Cagniard-de Hoop method. 7.5. Fundamental solutions for traction loading only. 7.6. Fundamental solutions for mixed loads. 7.7. Evaluation of dynamic energy release rate. 7.8. Influence of shear horizontal surface wave speed and crack tip velocity. Ch. 8. Fracture of functionally graded materials. 8.1. Introduction. 8.2. Formulation of boundary-initial value problems. 8.3. Basic solution techniques. 8.4. Fracture characterizing parameters. 8.5. Remarks -- ch. 9. Magneto-thermo-viscoelastic deformation and fracture. 9.1. Introduction. 9.2. Local balance equations for magnetic, thermal, and mechanical field quantities. 9.3. Free energy and entropy production inequality for memory-dependent magnetosensitive materials. 9.4. Coupled magneto-thermo-viscoelastic constitutive relations. 9.5. Generalized [symbol]-integral in nonlinear magneto-thermo-viscoelastic fracture. 9.6. Generalized plane crack problem and revisit of mode-III fracture of a magnetostrictive solid in a bias magnetic field -- ch. 10. Electro-thermo-viscoelastic deformation and fracture. 10.1. Introduction. 10.2. Local balance equations for electric, thermal, and mechanical field quantities. 10.3. Free energy and entropy production inequality for memory-dependent electrosensitive materials. 10.4. Coupled electro-thermo-viscoelastic constitutive relations. 10.5. Generalized [symbol]-integral in nonlinear electro-thermo-viscoelastic fracture. 10.6. Analogy between nonlinear magneto- and electro-thermo-viscoelastic constitutive and fracture theories. 10.7. Reduction to Dorfmann-Ogden nonlinear magneto- and electro-elasticity -- ch. 11. Nonlinear field theory of fracture mechanics for paramagnetic and ferromagnetic materials. 11.1. Introduction. 11.2. Global energy balance equation and non-negative global dissipation requirement. 11.3. Hamiltonian density and thermodynamically admissible conditions. 11.4. Thermodynamically consistent time-dependent fracture criterion. 11.5. Generalized energy release rate versus bulk dissipation rate. 11.6. Local generalized [symbol]-integral versus global generalized [symbol]-integral. 11.7. Essential work of fracture versus nonessential work of fracture -- ch. 12. Nonlinear field theory of fracture mechanics for piezoelectric and ferroelectric materials. 12.1. Introduction. 12.2. Nonlinear field equations. 12.3. Thermodynamically consistent time-dependent fracture criterion. 12.4. Correlation with conventional fracture mechanics approaches -- ch. 13. Applications to fracture characterization. 13.1. Introduction. 13.2. Energy release rate method and its generalization. 13.3. J-R curve method and its generalization. 13.4. Essential work of fracture method and its extension. 13.5. Closure. Fracture mechanics. http://id.loc.gov/authorities/subjects/sh85051154 Magnetic materials. Nonlinear theories. http://id.loc.gov/authorities/subjects/sh85092332 Mécanique de la rupture. Matériaux magnétiques. Théories non linéaires. TECHNOLOGY & ENGINEERING Fracture Mechanics. bisacsh Fracture mechanics fast Magnetic materials fast Nonlinear theories fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85051154 http://id.loc.gov/authorities/subjects/sh85092332 |
title | Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / |
title_auth | Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / |
title_exact_search | Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / |
title_full | Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / Xiaohong Chen, Yiu-Wing Mai. |
title_fullStr | Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / Xiaohong Chen, Yiu-Wing Mai. |
title_full_unstemmed | Fracture mechanics of electromagnetic materials : nonlinear field theory and applications / Xiaohong Chen, Yiu-Wing Mai. |
title_short | Fracture mechanics of electromagnetic materials : |
title_sort | fracture mechanics of electromagnetic materials nonlinear field theory and applications |
title_sub | nonlinear field theory and applications / |
topic | Fracture mechanics. http://id.loc.gov/authorities/subjects/sh85051154 Magnetic materials. Nonlinear theories. http://id.loc.gov/authorities/subjects/sh85092332 Mécanique de la rupture. Matériaux magnétiques. Théories non linéaires. TECHNOLOGY & ENGINEERING Fracture Mechanics. bisacsh Fracture mechanics fast Magnetic materials fast Nonlinear theories fast |
topic_facet | Fracture mechanics. Magnetic materials. Nonlinear theories. Mécanique de la rupture. Matériaux magnétiques. Théories non linéaires. TECHNOLOGY & ENGINEERING Fracture Mechanics. Fracture mechanics Magnetic materials Nonlinear theories |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=504184 |
work_keys_str_mv | AT chenxiaohong fracturemechanicsofelectromagneticmaterialsnonlinearfieldtheoryandapplications AT maiyw fracturemechanicsofelectromagneticmaterialsnonlinearfieldtheoryandapplications |