The theory of Hardy's Z-function /:
"This book is an outgrowth of a mini-course held at the Arctic Number Theory School, University of Helsinki, May 18-25, 2011. The central topic is Hardy's function, of great importance in the theory of the Riemann zeta-function. It is named after Godfrey Harold Hardy FRS (1877{1947), who w...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge ; New York :
Cambridge University Press,
2013.
|
Schriftenreihe: | Cambridge tracts in mathematics ;
196. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "This book is an outgrowth of a mini-course held at the Arctic Number Theory School, University of Helsinki, May 18-25, 2011. The central topic is Hardy's function, of great importance in the theory of the Riemann zeta-function. It is named after Godfrey Harold Hardy FRS (1877{1947), who was a prominent English mathematician, well-known for his achievements in number theory and mathematical analysis"-- |
Beschreibung: | 1 online resource (xvii, 245 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 225-238) and indexes. |
ISBN: | 9781139782982 1139782983 9781139236973 1139236970 9781139776950 1139776959 1283714760 9781283714761 9781139779999 1139779990 |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn815970183 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr mn||||||||| | ||
008 | 121105t20132013enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d YDXCP |d UIU |d CAMBR |d OSU |d OCLCQ |d OCLCF |d IDEBK |d EBLCP |d DEBSZ |d UV0 |d EUX |d UKBOL |d OCLCQ |d BUF |d UAB |d OCLCQ |d WYU |d AU@ |d UKAHL |d OCLCQ |d S8J |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d S9M |d OCLCL |d OCLCQ | ||
019 | |a 830947670 |a 833769574 |a 843112006 |a 874273423 | ||
020 | |a 9781139782982 |q (electronic bk.) | ||
020 | |a 1139782983 |q (electronic bk.) | ||
020 | |a 9781139236973 |q (electronic bk.) | ||
020 | |a 1139236970 |q (electronic bk.) | ||
020 | |a 9781139776950 |q (electronic bk.) | ||
020 | |a 1139776959 |q (electronic bk.) | ||
020 | |a 1283714760 |q (ebk) | ||
020 | |a 9781283714761 |q (ebk) | ||
020 | |a 9781139779999 | ||
020 | |a 1139779990 | ||
020 | |z 9781107028838 |q (hardback) | ||
020 | |z 1107028833 |q (hardback) | ||
035 | |a (OCoLC)815970183 |z (OCoLC)830947670 |z (OCoLC)833769574 |z (OCoLC)843112006 |z (OCoLC)874273423 | ||
037 | |a 402726 |b MIL | ||
050 | 4 | |a QA241 |b .I83 2013eb | |
072 | 7 | |a MAT |x 022000 |2 bisacsh | |
072 | 7 | |a MAT |2 eflch | |
082 | 7 | |a 512.7 |2 23 | |
084 | |a MAT022000 |2 bisacsh | ||
049 | |a MAIN | ||
100 | 1 | |a Ivić, A., |d 1949- |e author. |1 https://id.oclc.org/worldcat/entity/E39PBJkXw3RtTjcMG3pjywYpT3 |0 http://id.loc.gov/authorities/names/n80083143 | |
245 | 1 | 4 | |a The theory of Hardy's Z-function / |c Aleksandar Ivić, Univerzitet u Beogradu, Serbia. |
264 | 1 | |a Cambridge ; |a New York : |b Cambridge University Press, |c 2013. | |
264 | 4 | |c ©2013 | |
300 | |a 1 online resource (xvii, 245 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge tracts in mathematics ; |v 196 | |
520 | |a "This book is an outgrowth of a mini-course held at the Arctic Number Theory School, University of Helsinki, May 18-25, 2011. The central topic is Hardy's function, of great importance in the theory of the Riemann zeta-function. It is named after Godfrey Harold Hardy FRS (1877{1947), who was a prominent English mathematician, well-known for his achievements in number theory and mathematical analysis"-- |c Provided by publisher. | ||
504 | |a Includes bibliographical references (pages 225-238) and indexes. | ||
588 | 0 | |a Print version record. | |
505 | 0 | |a Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function. | |
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 6 | |a Théorie des nombres. | |
650 | 7 | |a MATHEMATICS |x Number Theory. |2 bisacsh | |
650 | 0 | 7 | |a Números, Teoría de |2 embucm |
650 | 7 | |a Number theory |2 fast | |
776 | 0 | 8 | |i Print version: |a Ivić, A., 1949- |t Theory of Hardy's Z-function |z 9781107028838 |w (DLC) 2012024804 |w (OCoLC)824601155 |
830 | 0 | |a Cambridge tracts in mathematics ; |v 196. |0 http://id.loc.gov/authorities/names/n42005726 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494747 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH34206482 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH33351321 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH26385765 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1042531 | ||
938 | |a EBSCOhost |b EBSC |n 494747 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis24126395 | ||
938 | |a YBP Library Services |b YANK |n 9893985 | ||
938 | |a YBP Library Services |b YANK |n 9914648 | ||
938 | |a YBP Library Services |b YANK |n 10393129 | ||
938 | |a YBP Library Services |b YANK |n 9894169 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn815970183 |
---|---|
_version_ | 1816882213191417856 |
adam_text | |
any_adam_object | |
author | Ivić, A., 1949- |
author_GND | http://id.loc.gov/authorities/names/n80083143 |
author_facet | Ivić, A., 1949- |
author_role | aut |
author_sort | Ivić, A., 1949- |
author_variant | a i ai |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA241 |
callnumber-raw | QA241 .I83 2013eb |
callnumber-search | QA241 .I83 2013eb |
callnumber-sort | QA 3241 I83 42013EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function. |
ctrlnum | (OCoLC)815970183 |
dewey-full | 512.7 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7 |
dewey-search | 512.7 |
dewey-sort | 3512.7 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04050cam a2200745 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn815970183</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr mn|||||||||</controlfield><controlfield tag="008">121105t20132013enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">UIU</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OSU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">IDEBK</subfield><subfield code="d">EBLCP</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">UV0</subfield><subfield code="d">EUX</subfield><subfield code="d">UKBOL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BUF</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">AU@</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S8J</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">830947670</subfield><subfield code="a">833769574</subfield><subfield code="a">843112006</subfield><subfield code="a">874273423</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139782982</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139782983</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139236973</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139236970</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139776950</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139776959</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283714760</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283714761</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139779999</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139779990</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107028838</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107028833</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815970183</subfield><subfield code="z">(OCoLC)830947670</subfield><subfield code="z">(OCoLC)833769574</subfield><subfield code="z">(OCoLC)843112006</subfield><subfield code="z">(OCoLC)874273423</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">402726</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA241</subfield><subfield code="b">.I83 2013eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="2">eflch</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT022000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ivić, A.,</subfield><subfield code="d">1949-</subfield><subfield code="e">author.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJkXw3RtTjcMG3pjywYpT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n80083143</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The theory of Hardy's Z-function /</subfield><subfield code="c">Aleksandar Ivić, Univerzitet u Beogradu, Serbia.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2013.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvii, 245 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">196</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book is an outgrowth of a mini-course held at the Arctic Number Theory School, University of Helsinki, May 18-25, 2011. The central topic is Hardy's function, of great importance in the theory of the Riemann zeta-function. It is named after Godfrey Harold Hardy FRS (1877{1947), who was a prominent English mathematician, well-known for his achievements in number theory and mathematical analysis"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 225-238) and indexes.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Number Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Números, Teoría de</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Ivić, A., 1949-</subfield><subfield code="t">Theory of Hardy's Z-function</subfield><subfield code="z">9781107028838</subfield><subfield code="w">(DLC) 2012024804</subfield><subfield code="w">(OCoLC)824601155</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge tracts in mathematics ;</subfield><subfield code="v">196.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42005726</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494747</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH34206482</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH33351321</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH26385765</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1042531</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">494747</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis24126395</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9893985</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9914648</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">10393129</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9894169</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn815970183 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:25:02Z |
institution | BVB |
isbn | 9781139782982 1139782983 9781139236973 1139236970 9781139776950 1139776959 1283714760 9781283714761 9781139779999 1139779990 |
language | English |
oclc_num | 815970183 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xvii, 245 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge tracts in mathematics ; |
series2 | Cambridge tracts in mathematics ; |
spelling | Ivić, A., 1949- author. https://id.oclc.org/worldcat/entity/E39PBJkXw3RtTjcMG3pjywYpT3 http://id.loc.gov/authorities/names/n80083143 The theory of Hardy's Z-function / Aleksandar Ivić, Univerzitet u Beogradu, Serbia. Cambridge ; New York : Cambridge University Press, 2013. ©2013 1 online resource (xvii, 245 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge tracts in mathematics ; 196 "This book is an outgrowth of a mini-course held at the Arctic Number Theory School, University of Helsinki, May 18-25, 2011. The central topic is Hardy's function, of great importance in the theory of the Riemann zeta-function. It is named after Godfrey Harold Hardy FRS (1877{1947), who was a prominent English mathematician, well-known for his achievements in number theory and mathematical analysis"-- Provided by publisher. Includes bibliographical references (pages 225-238) and indexes. Print version record. Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Number Theory. bisacsh Números, Teoría de embucm Number theory fast Print version: Ivić, A., 1949- Theory of Hardy's Z-function 9781107028838 (DLC) 2012024804 (OCoLC)824601155 Cambridge tracts in mathematics ; 196. http://id.loc.gov/authorities/names/n42005726 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494747 Volltext |
spellingShingle | Ivić, A., 1949- The theory of Hardy's Z-function / Cambridge tracts in mathematics ; Definition of (s), Z(t) and basic notions -- Zeros on the critical line -- Selberg class of L-functions -- Approximate functional equations for k(s) -- Derivatives of Z(t) -- Gram points -- Moments of Hardy's function -- Primitive of Hardy's function -- Mellin transforms of powers of Z(t) -- Further results on Mk(s) and Zk(s) -- On some problems involving Hardy's function. Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Number Theory. bisacsh Números, Teoría de embucm Number theory fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093222 |
title | The theory of Hardy's Z-function / |
title_auth | The theory of Hardy's Z-function / |
title_exact_search | The theory of Hardy's Z-function / |
title_full | The theory of Hardy's Z-function / Aleksandar Ivić, Univerzitet u Beogradu, Serbia. |
title_fullStr | The theory of Hardy's Z-function / Aleksandar Ivić, Univerzitet u Beogradu, Serbia. |
title_full_unstemmed | The theory of Hardy's Z-function / Aleksandar Ivić, Univerzitet u Beogradu, Serbia. |
title_short | The theory of Hardy's Z-function / |
title_sort | theory of hardy s z function |
topic | Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Théorie des nombres. MATHEMATICS Number Theory. bisacsh Números, Teoría de embucm Number theory fast |
topic_facet | Number theory. Théorie des nombres. MATHEMATICS Number Theory. Números, Teoría de Number theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=494747 |
work_keys_str_mv | AT ivica thetheoryofhardyszfunction AT ivica theoryofhardyszfunction |