Ergodic theorems /:
Ergodic Theorems (De Gruyter Studies in Mathematics).
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
Walter de Gruyter,
1985.
|
Schriftenreihe: | De Gruyter studies in mathematics ;
6. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Ergodic Theorems (De Gruyter Studies in Mathematics). |
Beschreibung: | 1 online resource (vii, 357 pages) |
Format: | Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110844641 3110844648 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn815508061 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 850228s1985 gw ob 001 0 eng d | ||
010 | |z 85004457 | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCO |d OCLCQ |d N$T |d OCLCQ |d OCLCF |d OCLCE |d OCLCQ |d COO |d OCLCQ |d AZK |d UIU |d COCUF |d MOR |d PIFAG |d OCLCQ |d IGB |d AGLDB |d U3W |d D6H |d CN8ML |d STF |d WRM |d OCLCQ |d VTS |d OCLCQ |d NRAMU |d INT |d ICG |d S9I |d OCLCQ |d AU@ |d CEF |d OCLCQ |d UKCRE |d AJS |d OCLCO |d QGK |d OCLCQ |d OCLCO |d OCLCL | ||
016 | 7 | |a 000003820548 |2 AU | |
019 | |a 752636406 |a 961493393 |a 962647697 |a 974670431 |a 974770871 |a 988445721 |a 992002630 |a 1013487003 |a 1018035960 |a 1037794349 |a 1038516186 |a 1043653946 |a 1057910025 |a 1077230655 |a 1100907127 |a 1119001855 |a 1119105563 |a 1153549066 |a 1161538867 |a 1181941885 |a 1192412083 |a 1259070030 | ||
020 | |a 9783110844641 |q (electronic bk.) | ||
020 | |a 3110844648 |q (electronic bk.) | ||
020 | |z 0899250246 |q (U.S.) | ||
020 | |z 3110084783 | ||
020 | |z 9783110084788 | ||
020 | |z 9780899250243 |q (U.S.) | ||
024 | 7 | |a 10.1515/9783110844641 |2 doi | |
035 | |a (OCoLC)815508061 |z (OCoLC)752636406 |z (OCoLC)961493393 |z (OCoLC)962647697 |z (OCoLC)974670431 |z (OCoLC)974770871 |z (OCoLC)988445721 |z (OCoLC)992002630 |z (OCoLC)1013487003 |z (OCoLC)1018035960 |z (OCoLC)1037794349 |z (OCoLC)1038516186 |z (OCoLC)1043653946 |z (OCoLC)1057910025 |z (OCoLC)1077230655 |z (OCoLC)1100907127 |z (OCoLC)1119001855 |z (OCoLC)1119105563 |z (OCoLC)1153549066 |z (OCoLC)1161538867 |z (OCoLC)1181941885 |z (OCoLC)1192412083 |z (OCoLC)1259070030 | ||
042 | |a dlr | ||
050 | 4 | |a QA313 |b .K74 1985eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515.4/2 |2 19 | |
084 | |a 31.41 |2 bcl | ||
049 | |a MAIN | ||
100 | 1 | |a Krengel, Ulrich, |d 1937- |1 https://id.oclc.org/worldcat/entity/E39PBJjXpjjWYJHjfDrvbBJYyd |0 http://id.loc.gov/authorities/names/n84214730 | |
245 | 1 | 0 | |a Ergodic theorems / |c Ulrich Krengel ; with a supplement by Antoine Brunel. |
260 | |a Berlin ; |a New York : |b Walter de Gruyter, |c 1985. | ||
300 | |a 1 online resource (vii, 357 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a De Gruyter studies in mathematics ; |v 6 | |
504 | |a Includes bibliographical references and index. | ||
506 | |3 Use copy |f Restrictions unspecified |2 star |5 MiAaHDL | ||
533 | |a Electronic reproduction. |b [Place of publication not identified] : |c HathiTrust Digital Library, |d 2011. |5 MiAaHDL | ||
538 | |a Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. |u http://purl.oclc.org/DLF/benchrepro0212 |5 MiAaHDL | ||
583 | 1 | |a digitized |c 2011 |h HathiTrust Digital Library |l committed to preserve |2 pda |5 MiAaHDL | |
505 | 0 | |a 2.4 The splitting theorem of Jacobs-Deleeuw-GlicksbergChapter 3: Positive contractions in L1; 3.1 The Hopf decomposition; 3.2 The Chacon-Ornstein theorem; 3.3 Brunel's lemma and the identification of the limit; 3.4 Existence of finite invariant measures; 3.5 The subadditive ergodic theorem for positive contractions in L1; 3.6 An example with divergence of Cesàro averages; 3.7 More on the filling scheme; Chapter 4: Extensions of the L1-theory; 4.1 Non positive contractions in L1; 4.2 Vector valued ergodic theorems; 4.3 Power bounded operators and harmonic functions. | |
505 | 0 | |a 7.2 Local ergodic theorems for multiparameter and non positive semigroups, and for vector valued functionsChapter 8: Subsequences and generalized means; 8.1 Strong convergence and mixing; 8.2 Pointwise convergence; Chapter 9: Special topics; 9.1 Ergodic theorems in von Neumann algebras; 9.2 Entropy and information; 9.3 Nonlinear nonexpansive mappings; 9.4 Miscellanea; Supplement: Harris Processes, Special Functions, Zero-Two-Law (by Antoine Brunei); Bibliography; Notation; Index. | |
505 | 0 | |a Chapter 1: Measure preserving and null preserving point mappings; 1.1 Von Neumann's mean ergodic theorem, ergodicity; 1.2 Birkhoff's ergodic theorem; 1.3 Recurrence; 1.4 Shift transformations and stationary processes; 1.5 Kingman's subadditive ergodic theorem and the multiplicative ergodic theorem of Oseledec; 1.6 Relatives of the maximal ergodic theorem; 1.7 Some general tools and principles; Chapter 2: Mean ergodic theory; 2.1 The mean ergodic theorem; 2.2 Uniform convergence; 2.3 Weak mixing, continuous spectrum and multiple recurrence. | |
520 | |a Ergodic Theorems (De Gruyter Studies in Mathematics). | ||
546 | |a English. | ||
650 | 0 | |a Ergodic theory. |0 http://id.loc.gov/authorities/subjects/sh85044600 | |
650 | 6 | |a Théorie ergodique. | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Ergodic theory |2 fast | |
650 | 7 | |a Théorie ergodique. |2 ram | |
700 | 1 | |a Brunel, Antoine. | |
758 | |i has work: |a Ergodic theorems (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGm9hY6qVqmVQgWG3VQg8C |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Krengel, Ulrich, 1937- |t Ergodic theorems. |d Berlin ; New York : Walter de Gruyter, 1985 |w (DLC) 85004457 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 6. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560070 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10599528 | ||
938 | |a EBSCOhost |b EBSC |n 560070 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn815508061 |
---|---|
_version_ | 1816882212784570368 |
adam_text | |
any_adam_object | |
author | Krengel, Ulrich, 1937- |
author2 | Brunel, Antoine |
author2_role | |
author2_variant | a b ab |
author_GND | http://id.loc.gov/authorities/names/n84214730 |
author_facet | Krengel, Ulrich, 1937- Brunel, Antoine |
author_role | |
author_sort | Krengel, Ulrich, 1937- |
author_variant | u k uk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA313 |
callnumber-raw | QA313 .K74 1985eb |
callnumber-search | QA313 .K74 1985eb |
callnumber-sort | QA 3313 K74 41985EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 2.4 The splitting theorem of Jacobs-Deleeuw-GlicksbergChapter 3: Positive contractions in L1; 3.1 The Hopf decomposition; 3.2 The Chacon-Ornstein theorem; 3.3 Brunel's lemma and the identification of the limit; 3.4 Existence of finite invariant measures; 3.5 The subadditive ergodic theorem for positive contractions in L1; 3.6 An example with divergence of Cesàro averages; 3.7 More on the filling scheme; Chapter 4: Extensions of the L1-theory; 4.1 Non positive contractions in L1; 4.2 Vector valued ergodic theorems; 4.3 Power bounded operators and harmonic functions. 7.2 Local ergodic theorems for multiparameter and non positive semigroups, and for vector valued functionsChapter 8: Subsequences and generalized means; 8.1 Strong convergence and mixing; 8.2 Pointwise convergence; Chapter 9: Special topics; 9.1 Ergodic theorems in von Neumann algebras; 9.2 Entropy and information; 9.3 Nonlinear nonexpansive mappings; 9.4 Miscellanea; Supplement: Harris Processes, Special Functions, Zero-Two-Law (by Antoine Brunei); Bibliography; Notation; Index. Chapter 1: Measure preserving and null preserving point mappings; 1.1 Von Neumann's mean ergodic theorem, ergodicity; 1.2 Birkhoff's ergodic theorem; 1.3 Recurrence; 1.4 Shift transformations and stationary processes; 1.5 Kingman's subadditive ergodic theorem and the multiplicative ergodic theorem of Oseledec; 1.6 Relatives of the maximal ergodic theorem; 1.7 Some general tools and principles; Chapter 2: Mean ergodic theory; 2.1 The mean ergodic theorem; 2.2 Uniform convergence; 2.3 Weak mixing, continuous spectrum and multiple recurrence. |
ctrlnum | (OCoLC)815508061 |
dewey-full | 515.4/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.4/2 |
dewey-search | 515.4/2 |
dewey-sort | 3515.4 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05601cam a2200721Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn815508061</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">850228s1985 gw ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 85004457 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCE</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">UIU</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">IGB</subfield><subfield code="d">AGLDB</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">CN8ML</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">ICG</subfield><subfield code="d">S9I</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">CEF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">QGK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">000003820548</subfield><subfield code="2">AU</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">752636406</subfield><subfield code="a">961493393</subfield><subfield code="a">962647697</subfield><subfield code="a">974670431</subfield><subfield code="a">974770871</subfield><subfield code="a">988445721</subfield><subfield code="a">992002630</subfield><subfield code="a">1013487003</subfield><subfield code="a">1018035960</subfield><subfield code="a">1037794349</subfield><subfield code="a">1038516186</subfield><subfield code="a">1043653946</subfield><subfield code="a">1057910025</subfield><subfield code="a">1077230655</subfield><subfield code="a">1100907127</subfield><subfield code="a">1119001855</subfield><subfield code="a">1119105563</subfield><subfield code="a">1153549066</subfield><subfield code="a">1161538867</subfield><subfield code="a">1181941885</subfield><subfield code="a">1192412083</subfield><subfield code="a">1259070030</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110844641</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110844648</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0899250246</subfield><subfield code="q">(U.S.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110084783</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110084788</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780899250243</subfield><subfield code="q">(U.S.)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110844641</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815508061</subfield><subfield code="z">(OCoLC)752636406</subfield><subfield code="z">(OCoLC)961493393</subfield><subfield code="z">(OCoLC)962647697</subfield><subfield code="z">(OCoLC)974670431</subfield><subfield code="z">(OCoLC)974770871</subfield><subfield code="z">(OCoLC)988445721</subfield><subfield code="z">(OCoLC)992002630</subfield><subfield code="z">(OCoLC)1013487003</subfield><subfield code="z">(OCoLC)1018035960</subfield><subfield code="z">(OCoLC)1037794349</subfield><subfield code="z">(OCoLC)1038516186</subfield><subfield code="z">(OCoLC)1043653946</subfield><subfield code="z">(OCoLC)1057910025</subfield><subfield code="z">(OCoLC)1077230655</subfield><subfield code="z">(OCoLC)1100907127</subfield><subfield code="z">(OCoLC)1119001855</subfield><subfield code="z">(OCoLC)1119105563</subfield><subfield code="z">(OCoLC)1153549066</subfield><subfield code="z">(OCoLC)1161538867</subfield><subfield code="z">(OCoLC)1181941885</subfield><subfield code="z">(OCoLC)1192412083</subfield><subfield code="z">(OCoLC)1259070030</subfield></datafield><datafield tag="042" ind1=" " ind2=" "><subfield code="a">dlr</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA313</subfield><subfield code="b">.K74 1985eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.4/2</subfield><subfield code="2">19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.41</subfield><subfield code="2">bcl</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krengel, Ulrich,</subfield><subfield code="d">1937-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJjXpjjWYJHjfDrvbBJYyd</subfield><subfield code="0">http://id.loc.gov/authorities/names/n84214730</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ergodic theorems /</subfield><subfield code="c">Ulrich Krengel ; with a supplement by Antoine Brunel.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Walter de Gruyter,</subfield><subfield code="c">1985.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 357 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">6</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="3">Use copy</subfield><subfield code="f">Restrictions unspecified</subfield><subfield code="2">star</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Electronic reproduction.</subfield><subfield code="b">[Place of publication not identified] :</subfield><subfield code="c">HathiTrust Digital Library,</subfield><subfield code="d">2011.</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="538" ind1=" " ind2=" "><subfield code="a">Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002.</subfield><subfield code="u">http://purl.oclc.org/DLF/benchrepro0212</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="583" ind1="1" ind2=" "><subfield code="a">digitized</subfield><subfield code="c">2011</subfield><subfield code="h">HathiTrust Digital Library</subfield><subfield code="l">committed to preserve</subfield><subfield code="2">pda</subfield><subfield code="5">MiAaHDL</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">2.4 The splitting theorem of Jacobs-Deleeuw-GlicksbergChapter 3: Positive contractions in L1; 3.1 The Hopf decomposition; 3.2 The Chacon-Ornstein theorem; 3.3 Brunel's lemma and the identification of the limit; 3.4 Existence of finite invariant measures; 3.5 The subadditive ergodic theorem for positive contractions in L1; 3.6 An example with divergence of Cesàro averages; 3.7 More on the filling scheme; Chapter 4: Extensions of the L1-theory; 4.1 Non positive contractions in L1; 4.2 Vector valued ergodic theorems; 4.3 Power bounded operators and harmonic functions.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">7.2 Local ergodic theorems for multiparameter and non positive semigroups, and for vector valued functionsChapter 8: Subsequences and generalized means; 8.1 Strong convergence and mixing; 8.2 Pointwise convergence; Chapter 9: Special topics; 9.1 Ergodic theorems in von Neumann algebras; 9.2 Entropy and information; 9.3 Nonlinear nonexpansive mappings; 9.4 Miscellanea; Supplement: Harris Processes, Special Functions, Zero-Two-Law (by Antoine Brunei); Bibliography; Notation; Index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1: Measure preserving and null preserving point mappings; 1.1 Von Neumann's mean ergodic theorem, ergodicity; 1.2 Birkhoff's ergodic theorem; 1.3 Recurrence; 1.4 Shift transformations and stationary processes; 1.5 Kingman's subadditive ergodic theorem and the multiplicative ergodic theorem of Oseledec; 1.6 Relatives of the maximal ergodic theorem; 1.7 Some general tools and principles; Chapter 2: Mean ergodic theory; 2.1 The mean ergodic theorem; 2.2 Uniform convergence; 2.3 Weak mixing, continuous spectrum and multiple recurrence.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ergodic Theorems (De Gruyter Studies in Mathematics).</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Ergodic theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85044600</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie ergodique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Théorie ergodique.</subfield><subfield code="2">ram</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brunel, Antoine.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Ergodic theorems (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGm9hY6qVqmVQgWG3VQg8C</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Krengel, Ulrich, 1937-</subfield><subfield code="t">Ergodic theorems.</subfield><subfield code="d">Berlin ; New York : Walter de Gruyter, 1985</subfield><subfield code="w">(DLC) 85004457</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">6.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560070</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10599528</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">560070</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn815508061 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:01Z |
institution | BVB |
isbn | 9783110844641 3110844648 |
language | English |
oclc_num | 815508061 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 357 pages) |
psigel | ZDB-4-EBA |
publishDate | 1985 |
publishDateSearch | 1985 |
publishDateSort | 1985 |
publisher | Walter de Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics ; |
spelling | Krengel, Ulrich, 1937- https://id.oclc.org/worldcat/entity/E39PBJjXpjjWYJHjfDrvbBJYyd http://id.loc.gov/authorities/names/n84214730 Ergodic theorems / Ulrich Krengel ; with a supplement by Antoine Brunel. Berlin ; New York : Walter de Gruyter, 1985. 1 online resource (vii, 357 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda De Gruyter studies in mathematics ; 6 Includes bibliographical references and index. Use copy Restrictions unspecified star MiAaHDL Electronic reproduction. [Place of publication not identified] : HathiTrust Digital Library, 2011. MiAaHDL Master and use copy. Digital master created according to Benchmark for Faithful Digital Reproductions of Monographs and Serials, Version 1. Digital Library Federation, December 2002. http://purl.oclc.org/DLF/benchrepro0212 MiAaHDL digitized 2011 HathiTrust Digital Library committed to preserve pda MiAaHDL 2.4 The splitting theorem of Jacobs-Deleeuw-GlicksbergChapter 3: Positive contractions in L1; 3.1 The Hopf decomposition; 3.2 The Chacon-Ornstein theorem; 3.3 Brunel's lemma and the identification of the limit; 3.4 Existence of finite invariant measures; 3.5 The subadditive ergodic theorem for positive contractions in L1; 3.6 An example with divergence of Cesàro averages; 3.7 More on the filling scheme; Chapter 4: Extensions of the L1-theory; 4.1 Non positive contractions in L1; 4.2 Vector valued ergodic theorems; 4.3 Power bounded operators and harmonic functions. 7.2 Local ergodic theorems for multiparameter and non positive semigroups, and for vector valued functionsChapter 8: Subsequences and generalized means; 8.1 Strong convergence and mixing; 8.2 Pointwise convergence; Chapter 9: Special topics; 9.1 Ergodic theorems in von Neumann algebras; 9.2 Entropy and information; 9.3 Nonlinear nonexpansive mappings; 9.4 Miscellanea; Supplement: Harris Processes, Special Functions, Zero-Two-Law (by Antoine Brunei); Bibliography; Notation; Index. Chapter 1: Measure preserving and null preserving point mappings; 1.1 Von Neumann's mean ergodic theorem, ergodicity; 1.2 Birkhoff's ergodic theorem; 1.3 Recurrence; 1.4 Shift transformations and stationary processes; 1.5 Kingman's subadditive ergodic theorem and the multiplicative ergodic theorem of Oseledec; 1.6 Relatives of the maximal ergodic theorem; 1.7 Some general tools and principles; Chapter 2: Mean ergodic theory; 2.1 The mean ergodic theorem; 2.2 Uniform convergence; 2.3 Weak mixing, continuous spectrum and multiple recurrence. Ergodic Theorems (De Gruyter Studies in Mathematics). English. Ergodic theory. http://id.loc.gov/authorities/subjects/sh85044600 Théorie ergodique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Ergodic theory fast Théorie ergodique. ram Brunel, Antoine. has work: Ergodic theorems (Text) https://id.oclc.org/worldcat/entity/E39PCGm9hY6qVqmVQgWG3VQg8C https://id.oclc.org/worldcat/ontology/hasWork Print version: Krengel, Ulrich, 1937- Ergodic theorems. Berlin ; New York : Walter de Gruyter, 1985 (DLC) 85004457 De Gruyter studies in mathematics ; 6. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560070 Volltext |
spellingShingle | Krengel, Ulrich, 1937- Ergodic theorems / De Gruyter studies in mathematics ; 2.4 The splitting theorem of Jacobs-Deleeuw-GlicksbergChapter 3: Positive contractions in L1; 3.1 The Hopf decomposition; 3.2 The Chacon-Ornstein theorem; 3.3 Brunel's lemma and the identification of the limit; 3.4 Existence of finite invariant measures; 3.5 The subadditive ergodic theorem for positive contractions in L1; 3.6 An example with divergence of Cesàro averages; 3.7 More on the filling scheme; Chapter 4: Extensions of the L1-theory; 4.1 Non positive contractions in L1; 4.2 Vector valued ergodic theorems; 4.3 Power bounded operators and harmonic functions. 7.2 Local ergodic theorems for multiparameter and non positive semigroups, and for vector valued functionsChapter 8: Subsequences and generalized means; 8.1 Strong convergence and mixing; 8.2 Pointwise convergence; Chapter 9: Special topics; 9.1 Ergodic theorems in von Neumann algebras; 9.2 Entropy and information; 9.3 Nonlinear nonexpansive mappings; 9.4 Miscellanea; Supplement: Harris Processes, Special Functions, Zero-Two-Law (by Antoine Brunei); Bibliography; Notation; Index. Chapter 1: Measure preserving and null preserving point mappings; 1.1 Von Neumann's mean ergodic theorem, ergodicity; 1.2 Birkhoff's ergodic theorem; 1.3 Recurrence; 1.4 Shift transformations and stationary processes; 1.5 Kingman's subadditive ergodic theorem and the multiplicative ergodic theorem of Oseledec; 1.6 Relatives of the maximal ergodic theorem; 1.7 Some general tools and principles; Chapter 2: Mean ergodic theory; 2.1 The mean ergodic theorem; 2.2 Uniform convergence; 2.3 Weak mixing, continuous spectrum and multiple recurrence. Ergodic theory. http://id.loc.gov/authorities/subjects/sh85044600 Théorie ergodique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Ergodic theory fast Théorie ergodique. ram |
subject_GND | http://id.loc.gov/authorities/subjects/sh85044600 |
title | Ergodic theorems / |
title_auth | Ergodic theorems / |
title_exact_search | Ergodic theorems / |
title_full | Ergodic theorems / Ulrich Krengel ; with a supplement by Antoine Brunel. |
title_fullStr | Ergodic theorems / Ulrich Krengel ; with a supplement by Antoine Brunel. |
title_full_unstemmed | Ergodic theorems / Ulrich Krengel ; with a supplement by Antoine Brunel. |
title_short | Ergodic theorems / |
title_sort | ergodic theorems |
topic | Ergodic theory. http://id.loc.gov/authorities/subjects/sh85044600 Théorie ergodique. MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Ergodic theory fast Théorie ergodique. ram |
topic_facet | Ergodic theory. Théorie ergodique. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Ergodic theory |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560070 |
work_keys_str_mv | AT krengelulrich ergodictheorems AT brunelantoine ergodictheorems |