Inner models and large cardinals /:
Biographical note: Professor Martin Zeman, Institut für formale Logik, University Vienna, Vienna, Austria.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
Walter de Gruyter,
2002.
|
Schriftenreihe: | De Gruyter series in logic and its applications,
5 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Biographical note: Professor Martin Zeman, Institut für formale Logik, University Vienna, Vienna, Austria. Main description: This volume is an introduction to inner model theory, an area of set theory which is concerned with fine structural inner models reflecting large cardinal properties of the set theoretic universe. The monograph contains a detailed presentation of general fine structure theory as well as a modern approach to the construction of small core models, namely those models containing at most one strong cardinal, together with some of their applications. The final part of the book is devoted to a new approach encompassing large inner models which admit many Woodin cardinals. The exposition is self-contained and does not assume any special prerequisities, which should make the text comprehensible not only to specialists but also to advanced students in Mathematical Logic and Set Theory. Review text: "Insgesamt ist Zeman ein ausgezeichnetes Lehrbuch über Kernmodelltheorie gelungen. Es ist sehr gut zum Selbststudium geeignet."H.-D. Donder, Jahresbericht der Deutschen Mathematiker-Vereinigung 106, 3-2004 |
Beschreibung: | 1 online resource (xi, 369 pages) |
Bibliographie: | Includes bibliographical references (pages 359-363) and index. |
ISBN: | 9783110857818 3110857812 |
ISSN: | 1438-1893 ; |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn815507724 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 010830s2002 gw ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCO |d OCLCQ |d N$T |d OCLCF |d DEBBG |d OCLCQ |d YDXCP |d COO |d OCLCQ |d DEBSZ |d AGLDB |d OCLCQ |d VTS |d AU@ |d STF |d OCLCQ |d AJS |d OCLCQ |d M8D |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
020 | |a 9783110857818 |q (electronic bk.) | ||
020 | |a 3110857812 |q (electronic bk.) | ||
020 | |z 3110163683 |q (cloth ; |q alk. paper) | ||
020 | |z 9783110163681 | ||
024 | 7 | |a 10.1515/9783110857818 |2 doi | |
035 | |a (OCoLC)815507724 | ||
050 | 4 | |a QA248 |b .Z46 2002eb | |
072 | 7 | |a MAT |x 028000 |2 bisacsh | |
082 | 7 | |a 511.3/22 |2 21 | |
049 | |a MAIN | ||
100 | 1 | |a Zeman, Martin, |d 1964- |1 https://id.oclc.org/worldcat/entity/E39PCjJTgd3qYWpWxr47HfWPXq |0 http://id.loc.gov/authorities/names/n2001014688 | |
245 | 1 | 0 | |a Inner models and large cardinals / |c Martin Zeman. |
260 | |a Berlin ; |a New York : |b Walter de Gruyter, |c 2002. | ||
300 | |a 1 online resource (xi, 369 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter series in logic and its applications, |x 1438-1893 ; |v 5 | |
504 | |a Includes bibliographical references (pages 359-363) and index. | ||
520 | |a Biographical note: Professor Martin Zeman, Institut für formale Logik, University Vienna, Vienna, Austria. | ||
520 | |a Main description: This volume is an introduction to inner model theory, an area of set theory which is concerned with fine structural inner models reflecting large cardinal properties of the set theoretic universe. The monograph contains a detailed presentation of general fine structure theory as well as a modern approach to the construction of small core models, namely those models containing at most one strong cardinal, together with some of their applications. The final part of the book is devoted to a new approach encompassing large inner models which admit many Woodin cardinals. The exposition is self-contained and does not assume any special prerequisities, which should make the text comprehensible not only to specialists but also to advanced students in Mathematical Logic and Set Theory. | ||
520 | |a Review text: "Insgesamt ist Zeman ein ausgezeichnetes Lehrbuch über Kernmodelltheorie gelungen. Es ist sehr gut zum Selbststudium geeignet."H.-D. Donder, Jahresbericht der Deutschen Mathematiker-Vereinigung 106, 3-2004 | ||
505 | 0 | |a Preface -- 1 Fine Structure -- 1.1 Acceptable J-Structures -- 1.2 The V1-Projectum -- 1.3 Downward Extension of Embeddings Lemmata -- 1.4 Upward Extension of Embeddings Lemma -- 1.5 Iterated Projecta -- 1.6 V*-Relations -- 1.7 V0(n)-Embeddings -- 1.8 Substitution and Good Functions -- 1.9 Standard Parameters -- 1.10 Two Applications to L -- 1.11 More on Downward Extensions of Embeddings -- 1.12 Witnesses and Solidity -- Notes -- 2 Extenders and Coherent Structures -- 2.1 Extenders -- 2.2 The Hypermeasure Representation of Extenders -- 2.3 Amenability -- 2.4 Coherent Structures. | |
505 | 8 | |a 2.5 Extendibility -- 2.6 Strong Cardinals -- Notes -- 3 Fine Ultrapowers -- 3.1 The *-Ultrapower Construction -- 3.2 Some Special Preservation Properties -- 3.3 When F Is Close to M -- 3.4 Extendibility -- 3.5 k-Ultrapowers -- 3.6 Pseudoultrapowers -- Notes -- 4 Mice and Iterability -- 4.1 Premice -- 4.2 Iterations -- 4.3 Copying and the Dodd-Jensen Lemma -- 4.4 Comparison Process -- 4.5 Some Iterability Criteria -- 4.6 Bicephali -- Notes -- 5 Solidity and Condensation -- 5.1 Cores and Coiterations -- 5.2 The Solidity Theorem -- 5.3 Consequences of Solidity -- 5.4 The Canonical Ordering of Mice. | |
505 | 8 | |a 5.5 Condensation Lemma -- 5.6 Upwards Extensions to Premice -- Notes -- 6 Extender Models -- 6.1 Extender Models and Iterations -- 6.2 The Canonical Ordering of Weasels -- 6.3 Universality -- 6.4 The Model Kc -- 6.5 0** -- 6.6 Weak Covering -- Notes -- 7 The Core Model -- 7.1 Inductive Definition of K -- 7.2 Steel's Definition of K -- 7.3 The Existence of K -- 7.4 Embeddings of K and Generic Absoluteness -- 7.5 Weak Covering for K -- Notes -- 8 One Strong Cardinal -- 8.1 Premice -- 8.2 Properties of Mice -- 8.3 Extender Models up to One Strong Cardinal -- Notes -- 9 Overlapping Extenders. | |
505 | 8 | |a 9.1 Premice and Iteration Trees -- 9.2 Copying and the Dodd-Jensen Property -- 9.3 Solidity and Condensation -- 9.4 Uniqueness of Weil-Founded Branches -- 9.5 Towards the Ultimate Model Kc -- Notes -- Bibliography -- Index. | |
650 | 0 | |a Constructibility (Set theory) |0 http://id.loc.gov/authorities/subjects/sh85031342 | |
650 | 0 | |a Large cardinals (Mathematics) |0 http://id.loc.gov/authorities/subjects/sh94004021 | |
650 | 6 | |a Constructibilité (Théorie des ensembles) | |
650 | 6 | |a Grands cardinaux (Nombres) | |
650 | 7 | |a MATHEMATICS |x Set Theory. |2 bisacsh | |
650 | 7 | |a Constructibility (Set theory) |2 fast | |
650 | 7 | |a Large cardinals (Mathematics) |2 fast | |
653 | 0 | |a Constructibility (Set theory) | |
653 | 0 | |a Large cardinals (Mathematics) | |
776 | 0 | 8 | |i Print version: |a Zeman, Martin, 1964- |t Inner models and large cardinals. |d Berlin ; New York : Walter de Gruyter, 2002 |w (DLC) 2001047562 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=559707 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10599359 | ||
938 | |a EBSCOhost |b EBSC |n 559707 | ||
938 | |a YBP Library Services |b YANK |n 9656119 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn815507724 |
---|---|
_version_ | 1816882212829659137 |
adam_text | |
any_adam_object | |
author | Zeman, Martin, 1964- |
author_GND | http://id.loc.gov/authorities/names/n2001014688 |
author_facet | Zeman, Martin, 1964- |
author_role | |
author_sort | Zeman, Martin, 1964- |
author_variant | m z mz |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA248 |
callnumber-raw | QA248 .Z46 2002eb |
callnumber-search | QA248 .Z46 2002eb |
callnumber-sort | QA 3248 Z46 42002EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Preface -- 1 Fine Structure -- 1.1 Acceptable J-Structures -- 1.2 The V1-Projectum -- 1.3 Downward Extension of Embeddings Lemmata -- 1.4 Upward Extension of Embeddings Lemma -- 1.5 Iterated Projecta -- 1.6 V*-Relations -- 1.7 V0(n)-Embeddings -- 1.8 Substitution and Good Functions -- 1.9 Standard Parameters -- 1.10 Two Applications to L -- 1.11 More on Downward Extensions of Embeddings -- 1.12 Witnesses and Solidity -- Notes -- 2 Extenders and Coherent Structures -- 2.1 Extenders -- 2.2 The Hypermeasure Representation of Extenders -- 2.3 Amenability -- 2.4 Coherent Structures. 2.5 Extendibility -- 2.6 Strong Cardinals -- Notes -- 3 Fine Ultrapowers -- 3.1 The *-Ultrapower Construction -- 3.2 Some Special Preservation Properties -- 3.3 When F Is Close to M -- 3.4 Extendibility -- 3.5 k-Ultrapowers -- 3.6 Pseudoultrapowers -- Notes -- 4 Mice and Iterability -- 4.1 Premice -- 4.2 Iterations -- 4.3 Copying and the Dodd-Jensen Lemma -- 4.4 Comparison Process -- 4.5 Some Iterability Criteria -- 4.6 Bicephali -- Notes -- 5 Solidity and Condensation -- 5.1 Cores and Coiterations -- 5.2 The Solidity Theorem -- 5.3 Consequences of Solidity -- 5.4 The Canonical Ordering of Mice. 5.5 Condensation Lemma -- 5.6 Upwards Extensions to Premice -- Notes -- 6 Extender Models -- 6.1 Extender Models and Iterations -- 6.2 The Canonical Ordering of Weasels -- 6.3 Universality -- 6.4 The Model Kc -- 6.5 0** -- 6.6 Weak Covering -- Notes -- 7 The Core Model -- 7.1 Inductive Definition of K -- 7.2 Steel's Definition of K -- 7.3 The Existence of K -- 7.4 Embeddings of K and Generic Absoluteness -- 7.5 Weak Covering for K -- Notes -- 8 One Strong Cardinal -- 8.1 Premice -- 8.2 Properties of Mice -- 8.3 Extender Models up to One Strong Cardinal -- Notes -- 9 Overlapping Extenders. 9.1 Premice and Iteration Trees -- 9.2 Copying and the Dodd-Jensen Property -- 9.3 Solidity and Condensation -- 9.4 Uniqueness of Weil-Founded Branches -- 9.5 Towards the Ultimate Model Kc -- Notes -- Bibliography -- Index. |
ctrlnum | (OCoLC)815507724 |
dewey-full | 511.3/22 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3/22 |
dewey-search | 511.3/22 |
dewey-sort | 3511.3 222 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05586cam a2200601Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn815507724</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">010830s2002 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110857818</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110857812</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110163683</subfield><subfield code="q">(cloth ;</subfield><subfield code="q">alk. paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110163681</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110857818</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815507724</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA248</subfield><subfield code="b">.Z46 2002eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">028000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">511.3/22</subfield><subfield code="2">21</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zeman, Martin,</subfield><subfield code="d">1964-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjJTgd3qYWpWxr47HfWPXq</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2001014688</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inner models and large cardinals /</subfield><subfield code="c">Martin Zeman.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Walter de Gruyter,</subfield><subfield code="c">2002.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 369 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter series in logic and its applications,</subfield><subfield code="x">1438-1893 ;</subfield><subfield code="v">5</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 359-363) and index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biographical note: Professor Martin Zeman, Institut für formale Logik, University Vienna, Vienna, Austria.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Main description: This volume is an introduction to inner model theory, an area of set theory which is concerned with fine structural inner models reflecting large cardinal properties of the set theoretic universe. The monograph contains a detailed presentation of general fine structure theory as well as a modern approach to the construction of small core models, namely those models containing at most one strong cardinal, together with some of their applications. The final part of the book is devoted to a new approach encompassing large inner models which admit many Woodin cardinals. The exposition is self-contained and does not assume any special prerequisities, which should make the text comprehensible not only to specialists but also to advanced students in Mathematical Logic and Set Theory.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Review text: "Insgesamt ist Zeman ein ausgezeichnetes Lehrbuch über Kernmodelltheorie gelungen. Es ist sehr gut zum Selbststudium geeignet."H.-D. Donder, Jahresbericht der Deutschen Mathematiker-Vereinigung 106, 3-2004</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- 1 Fine Structure -- 1.1 Acceptable J-Structures -- 1.2 The V1-Projectum -- 1.3 Downward Extension of Embeddings Lemmata -- 1.4 Upward Extension of Embeddings Lemma -- 1.5 Iterated Projecta -- 1.6 V*-Relations -- 1.7 V0(n)-Embeddings -- 1.8 Substitution and Good Functions -- 1.9 Standard Parameters -- 1.10 Two Applications to L -- 1.11 More on Downward Extensions of Embeddings -- 1.12 Witnesses and Solidity -- Notes -- 2 Extenders and Coherent Structures -- 2.1 Extenders -- 2.2 The Hypermeasure Representation of Extenders -- 2.3 Amenability -- 2.4 Coherent Structures.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.5 Extendibility -- 2.6 Strong Cardinals -- Notes -- 3 Fine Ultrapowers -- 3.1 The *-Ultrapower Construction -- 3.2 Some Special Preservation Properties -- 3.3 When F Is Close to M -- 3.4 Extendibility -- 3.5 k-Ultrapowers -- 3.6 Pseudoultrapowers -- Notes -- 4 Mice and Iterability -- 4.1 Premice -- 4.2 Iterations -- 4.3 Copying and the Dodd-Jensen Lemma -- 4.4 Comparison Process -- 4.5 Some Iterability Criteria -- 4.6 Bicephali -- Notes -- 5 Solidity and Condensation -- 5.1 Cores and Coiterations -- 5.2 The Solidity Theorem -- 5.3 Consequences of Solidity -- 5.4 The Canonical Ordering of Mice.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.5 Condensation Lemma -- 5.6 Upwards Extensions to Premice -- Notes -- 6 Extender Models -- 6.1 Extender Models and Iterations -- 6.2 The Canonical Ordering of Weasels -- 6.3 Universality -- 6.4 The Model Kc -- 6.5 0** -- 6.6 Weak Covering -- Notes -- 7 The Core Model -- 7.1 Inductive Definition of K -- 7.2 Steel's Definition of K -- 7.3 The Existence of K -- 7.4 Embeddings of K and Generic Absoluteness -- 7.5 Weak Covering for K -- Notes -- 8 One Strong Cardinal -- 8.1 Premice -- 8.2 Properties of Mice -- 8.3 Extender Models up to One Strong Cardinal -- Notes -- 9 Overlapping Extenders.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.1 Premice and Iteration Trees -- 9.2 Copying and the Dodd-Jensen Property -- 9.3 Solidity and Condensation -- 9.4 Uniqueness of Weil-Founded Branches -- 9.5 Towards the Ultimate Model Kc -- Notes -- Bibliography -- Index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Constructibility (Set theory)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85031342</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Large cardinals (Mathematics)</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh94004021</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Constructibilité (Théorie des ensembles)</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Grands cardinaux (Nombres)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Set Theory.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Constructibility (Set theory)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Large cardinals (Mathematics)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Constructibility (Set theory)</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Large cardinals (Mathematics)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Zeman, Martin, 1964-</subfield><subfield code="t">Inner models and large cardinals.</subfield><subfield code="d">Berlin ; New York : Walter de Gruyter, 2002</subfield><subfield code="w">(DLC) 2001047562</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=559707</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10599359</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">559707</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9656119</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn815507724 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:01Z |
institution | BVB |
isbn | 9783110857818 3110857812 |
issn | 1438-1893 ; |
language | English |
oclc_num | 815507724 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xi, 369 pages) |
psigel | ZDB-4-EBA |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Walter de Gruyter, |
record_format | marc |
series2 | De Gruyter series in logic and its applications, |
spelling | Zeman, Martin, 1964- https://id.oclc.org/worldcat/entity/E39PCjJTgd3qYWpWxr47HfWPXq http://id.loc.gov/authorities/names/n2001014688 Inner models and large cardinals / Martin Zeman. Berlin ; New York : Walter de Gruyter, 2002. 1 online resource (xi, 369 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter series in logic and its applications, 1438-1893 ; 5 Includes bibliographical references (pages 359-363) and index. Biographical note: Professor Martin Zeman, Institut für formale Logik, University Vienna, Vienna, Austria. Main description: This volume is an introduction to inner model theory, an area of set theory which is concerned with fine structural inner models reflecting large cardinal properties of the set theoretic universe. The monograph contains a detailed presentation of general fine structure theory as well as a modern approach to the construction of small core models, namely those models containing at most one strong cardinal, together with some of their applications. The final part of the book is devoted to a new approach encompassing large inner models which admit many Woodin cardinals. The exposition is self-contained and does not assume any special prerequisities, which should make the text comprehensible not only to specialists but also to advanced students in Mathematical Logic and Set Theory. Review text: "Insgesamt ist Zeman ein ausgezeichnetes Lehrbuch über Kernmodelltheorie gelungen. Es ist sehr gut zum Selbststudium geeignet."H.-D. Donder, Jahresbericht der Deutschen Mathematiker-Vereinigung 106, 3-2004 Preface -- 1 Fine Structure -- 1.1 Acceptable J-Structures -- 1.2 The V1-Projectum -- 1.3 Downward Extension of Embeddings Lemmata -- 1.4 Upward Extension of Embeddings Lemma -- 1.5 Iterated Projecta -- 1.6 V*-Relations -- 1.7 V0(n)-Embeddings -- 1.8 Substitution and Good Functions -- 1.9 Standard Parameters -- 1.10 Two Applications to L -- 1.11 More on Downward Extensions of Embeddings -- 1.12 Witnesses and Solidity -- Notes -- 2 Extenders and Coherent Structures -- 2.1 Extenders -- 2.2 The Hypermeasure Representation of Extenders -- 2.3 Amenability -- 2.4 Coherent Structures. 2.5 Extendibility -- 2.6 Strong Cardinals -- Notes -- 3 Fine Ultrapowers -- 3.1 The *-Ultrapower Construction -- 3.2 Some Special Preservation Properties -- 3.3 When F Is Close to M -- 3.4 Extendibility -- 3.5 k-Ultrapowers -- 3.6 Pseudoultrapowers -- Notes -- 4 Mice and Iterability -- 4.1 Premice -- 4.2 Iterations -- 4.3 Copying and the Dodd-Jensen Lemma -- 4.4 Comparison Process -- 4.5 Some Iterability Criteria -- 4.6 Bicephali -- Notes -- 5 Solidity and Condensation -- 5.1 Cores and Coiterations -- 5.2 The Solidity Theorem -- 5.3 Consequences of Solidity -- 5.4 The Canonical Ordering of Mice. 5.5 Condensation Lemma -- 5.6 Upwards Extensions to Premice -- Notes -- 6 Extender Models -- 6.1 Extender Models and Iterations -- 6.2 The Canonical Ordering of Weasels -- 6.3 Universality -- 6.4 The Model Kc -- 6.5 0** -- 6.6 Weak Covering -- Notes -- 7 The Core Model -- 7.1 Inductive Definition of K -- 7.2 Steel's Definition of K -- 7.3 The Existence of K -- 7.4 Embeddings of K and Generic Absoluteness -- 7.5 Weak Covering for K -- Notes -- 8 One Strong Cardinal -- 8.1 Premice -- 8.2 Properties of Mice -- 8.3 Extender Models up to One Strong Cardinal -- Notes -- 9 Overlapping Extenders. 9.1 Premice and Iteration Trees -- 9.2 Copying and the Dodd-Jensen Property -- 9.3 Solidity and Condensation -- 9.4 Uniqueness of Weil-Founded Branches -- 9.5 Towards the Ultimate Model Kc -- Notes -- Bibliography -- Index. Constructibility (Set theory) http://id.loc.gov/authorities/subjects/sh85031342 Large cardinals (Mathematics) http://id.loc.gov/authorities/subjects/sh94004021 Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS Set Theory. bisacsh Constructibility (Set theory) fast Large cardinals (Mathematics) fast Constructibility (Set theory) Large cardinals (Mathematics) Print version: Zeman, Martin, 1964- Inner models and large cardinals. Berlin ; New York : Walter de Gruyter, 2002 (DLC) 2001047562 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=559707 Volltext |
spellingShingle | Zeman, Martin, 1964- Inner models and large cardinals / Preface -- 1 Fine Structure -- 1.1 Acceptable J-Structures -- 1.2 The V1-Projectum -- 1.3 Downward Extension of Embeddings Lemmata -- 1.4 Upward Extension of Embeddings Lemma -- 1.5 Iterated Projecta -- 1.6 V*-Relations -- 1.7 V0(n)-Embeddings -- 1.8 Substitution and Good Functions -- 1.9 Standard Parameters -- 1.10 Two Applications to L -- 1.11 More on Downward Extensions of Embeddings -- 1.12 Witnesses and Solidity -- Notes -- 2 Extenders and Coherent Structures -- 2.1 Extenders -- 2.2 The Hypermeasure Representation of Extenders -- 2.3 Amenability -- 2.4 Coherent Structures. 2.5 Extendibility -- 2.6 Strong Cardinals -- Notes -- 3 Fine Ultrapowers -- 3.1 The *-Ultrapower Construction -- 3.2 Some Special Preservation Properties -- 3.3 When F Is Close to M -- 3.4 Extendibility -- 3.5 k-Ultrapowers -- 3.6 Pseudoultrapowers -- Notes -- 4 Mice and Iterability -- 4.1 Premice -- 4.2 Iterations -- 4.3 Copying and the Dodd-Jensen Lemma -- 4.4 Comparison Process -- 4.5 Some Iterability Criteria -- 4.6 Bicephali -- Notes -- 5 Solidity and Condensation -- 5.1 Cores and Coiterations -- 5.2 The Solidity Theorem -- 5.3 Consequences of Solidity -- 5.4 The Canonical Ordering of Mice. 5.5 Condensation Lemma -- 5.6 Upwards Extensions to Premice -- Notes -- 6 Extender Models -- 6.1 Extender Models and Iterations -- 6.2 The Canonical Ordering of Weasels -- 6.3 Universality -- 6.4 The Model Kc -- 6.5 0** -- 6.6 Weak Covering -- Notes -- 7 The Core Model -- 7.1 Inductive Definition of K -- 7.2 Steel's Definition of K -- 7.3 The Existence of K -- 7.4 Embeddings of K and Generic Absoluteness -- 7.5 Weak Covering for K -- Notes -- 8 One Strong Cardinal -- 8.1 Premice -- 8.2 Properties of Mice -- 8.3 Extender Models up to One Strong Cardinal -- Notes -- 9 Overlapping Extenders. 9.1 Premice and Iteration Trees -- 9.2 Copying and the Dodd-Jensen Property -- 9.3 Solidity and Condensation -- 9.4 Uniqueness of Weil-Founded Branches -- 9.5 Towards the Ultimate Model Kc -- Notes -- Bibliography -- Index. Constructibility (Set theory) http://id.loc.gov/authorities/subjects/sh85031342 Large cardinals (Mathematics) http://id.loc.gov/authorities/subjects/sh94004021 Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS Set Theory. bisacsh Constructibility (Set theory) fast Large cardinals (Mathematics) fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85031342 http://id.loc.gov/authorities/subjects/sh94004021 |
title | Inner models and large cardinals / |
title_auth | Inner models and large cardinals / |
title_exact_search | Inner models and large cardinals / |
title_full | Inner models and large cardinals / Martin Zeman. |
title_fullStr | Inner models and large cardinals / Martin Zeman. |
title_full_unstemmed | Inner models and large cardinals / Martin Zeman. |
title_short | Inner models and large cardinals / |
title_sort | inner models and large cardinals |
topic | Constructibility (Set theory) http://id.loc.gov/authorities/subjects/sh85031342 Large cardinals (Mathematics) http://id.loc.gov/authorities/subjects/sh94004021 Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS Set Theory. bisacsh Constructibility (Set theory) fast Large cardinals (Mathematics) fast |
topic_facet | Constructibility (Set theory) Large cardinals (Mathematics) Constructibilité (Théorie des ensembles) Grands cardinaux (Nombres) MATHEMATICS Set Theory. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=559707 |
work_keys_str_mv | AT zemanmartin innermodelsandlargecardinals |