Transcendental numbers /:
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin :
W. de Gruyter,
1989.
|
Schriftenreihe: | De Gruyter studies in mathematics ;
12. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (xix, 466 pages) |
Bibliographie: | Includes bibliographical references. |
ISBN: | 9783110889055 3110889056 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn815506591 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 011211s1989 gw ob 000 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCO |d OCLCQ |d OCLCF |d N$T |d DEBBG |d YDXCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d AZK |d NOC |d UIU |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d COCUF |d NRAMU |d INT |d VT2 |d AU@ |d OCLCQ |d TKN |d OCLCQ |d HS0 |d K6U |d INARC |d VLY |d OCLCQ |d OCLCO |d BTN |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 961625893 |a 962644781 |a 992841595 |a 1058472357 |a 1097098328 |a 1162192952 | ||
020 | |a 9783110889055 |q (electronic bk.) | ||
020 | |a 3110889056 |q (electronic bk.) | ||
020 | |z 9783110115680 | ||
024 | 7 | |a 10.1515/9783110889055 |2 doi | |
035 | |a (OCoLC)815506591 |z (OCoLC)961625893 |z (OCoLC)962644781 |z (OCoLC)992841595 |z (OCoLC)1058472357 |z (OCoLC)1097098328 |z (OCoLC)1162192952 | ||
050 | 4 | |a QA247.5 |b .S5513 1989eb | |
072 | 7 | |a MAT |x 002040 |2 bisacsh | |
082 | 7 | |a 512.73 |2 22 | |
049 | |a MAIN | ||
100 | 1 | |a Shidlovskiĭ, A. B. | |
245 | 1 | 0 | |a Transcendental numbers / |c Andrei Borisovich Shidlovskii ; with a foreword by W. Dale Brownawell ; translated from the Russian by Neal Koblitz. |
260 | |a Berlin : |b W. de Gruyter, |c 1989. | ||
300 | |a 1 online resource (xix, 466 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file | ||
490 | 1 | |a De Gruyter studies in mathematics ; |v 12 | |
505 | 0 | |a Foreword -- Preface to the English edition -- Preface -- Notation -- Introduction -- 1. Approximation of algebraic numbers -- 2. The classical method of Hermite-Lindemann -- 3. Methods arising from the solution of Hilbert's Seventh Problem, and their subsequent development -- 4. Siegel's method and its further development -- Chapter 1. Approximation of real and algebraic numbers -- 1. Approximation of real numbers by algebraic numbers -- 2. Simultaneous approximation -- 3. Approximation of algebraic numbers by rational numbers. | |
505 | 8 | |a 4. Approximation of algebraic numbers by algebraic numbers -- 5. Further refinements and generalizations of Liouville's Theorem -- Remarks -- Chapter 2. Arithmetic properties of the values of the exponential function at algebraic points -- 1. Transcendence of e -- 2. Transcendence of s -- 3. Transcendence of the values of the exponential function at algebraic points -- 4. Approximation of ez by rational functions -- 5. Linear approximating forms for eu1z ..., eumz -- 6. A set of linear approximating forms -- 7. Lindemann's Theorem. | |
505 | 8 | |a 8. Linear approximating forms and the Newton interpolation series for the exponential function -- Remarks -- Chapter 3. Transcendence and algebraic independence of the values of F-functions which are not connected by algebraic equations over the field of rational functions -- 1. E-functions -- 2. The First Fundamental Theorem -- 3. Some properties of linear and fractional-linear forms -- 4. Properties of linear forms in functions which satisfy a system of homogeneous linear differential equations -- 5. Order of zero of a linear form at z = 0. | |
505 | 8 | |a 6. The determinant of a set of linear forms -- 7. Passing to linearly independent numerical linear forms -- 8. Auxiliary lemmas on solutions of systems of homogeneous linear equations -- 9. Functional linear approximating forms -- 10. Numerical linear approximating forms -- 11. Rank of the m-tuple f1(q) ..., fm(q) -- 12. Proof of the First Fundamental Theorem -- 13. Consequences of the First Fundamental Theorem -- Remarks. | |
505 | 8 | |a Chapter 4. Transcendence and algebraic independence of the values of F-functions which are connected by algebraic equations over the field of rational functions -- 1. Rank of the m-tuple f1(q) ..., fm(q) -- 2. Some lemmas -- 3. Estimate for the dimension of a vector space spanned by monomials in elements of a field extension -- 4. The Third Fundamental Theorem -- 5. Transcendence of the values of F-functions connected by arbitrary algebraic equations over C(z) -- 6. Algebraic independence of the values of E-functions which are connected by arbitrary algebraic equations over C(z) | |
504 | |a Includes bibliographical references. | ||
546 | |a English. | ||
650 | 0 | |a Transcendental numbers. |0 http://id.loc.gov/authorities/subjects/sh85093223 | |
650 | 0 | |a Number theory. |0 http://id.loc.gov/authorities/subjects/sh85093222 | |
650 | 6 | |a Nombres transcendants. | |
650 | 6 | |a Théorie des nombres. | |
650 | 7 | |a MATHEMATICS |x Algebra |x Intermediate. |2 bisacsh | |
650 | 7 | |a Number theory |2 fast | |
650 | 7 | |a Transcendental numbers |2 fast | |
700 | 1 | |a Koblitz, Neal, |d 1948- |0 http://id.loc.gov/authorities/names/n77004276 | |
776 | 0 | 8 | |i Print version: |a Shidlovskii, Andrei B. |t Transcendental Numbers. |d Berlin/Boston : De Gruyter, ©1989 |z 9783110115680 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 12. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=558783 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10598044 | ||
938 | |a EBSCOhost |b EBSC |n 558783 | ||
938 | |a Internet Archive |b INAR |n transcendentalnu0000shid | ||
938 | |a YBP Library Services |b YANK |n 9656600 | ||
936 | |a BATCHLOAD | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn815506591 |
---|---|
_version_ | 1816882212555980800 |
adam_text | |
any_adam_object | |
author | Shidlovskiĭ, A. B. |
author2 | Koblitz, Neal, 1948- |
author2_role | |
author2_variant | n k nk |
author_GND | http://id.loc.gov/authorities/names/n77004276 |
author_facet | Shidlovskiĭ, A. B. Koblitz, Neal, 1948- |
author_role | |
author_sort | Shidlovskiĭ, A. B. |
author_variant | a b s ab abs |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247.5 .S5513 1989eb |
callnumber-search | QA247.5 .S5513 1989eb |
callnumber-sort | QA 3247.5 S5513 41989EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Foreword -- Preface to the English edition -- Preface -- Notation -- Introduction -- 1. Approximation of algebraic numbers -- 2. The classical method of Hermite-Lindemann -- 3. Methods arising from the solution of Hilbert's Seventh Problem, and their subsequent development -- 4. Siegel's method and its further development -- Chapter 1. Approximation of real and algebraic numbers -- 1. Approximation of real numbers by algebraic numbers -- 2. Simultaneous approximation -- 3. Approximation of algebraic numbers by rational numbers. 4. Approximation of algebraic numbers by algebraic numbers -- 5. Further refinements and generalizations of Liouville's Theorem -- Remarks -- Chapter 2. Arithmetic properties of the values of the exponential function at algebraic points -- 1. Transcendence of e -- 2. Transcendence of s -- 3. Transcendence of the values of the exponential function at algebraic points -- 4. Approximation of ez by rational functions -- 5. Linear approximating forms for eu1z ..., eumz -- 6. A set of linear approximating forms -- 7. Lindemann's Theorem. 8. Linear approximating forms and the Newton interpolation series for the exponential function -- Remarks -- Chapter 3. Transcendence and algebraic independence of the values of F-functions which are not connected by algebraic equations over the field of rational functions -- 1. E-functions -- 2. The First Fundamental Theorem -- 3. Some properties of linear and fractional-linear forms -- 4. Properties of linear forms in functions which satisfy a system of homogeneous linear differential equations -- 5. Order of zero of a linear form at z = 0. 6. The determinant of a set of linear forms -- 7. Passing to linearly independent numerical linear forms -- 8. Auxiliary lemmas on solutions of systems of homogeneous linear equations -- 9. Functional linear approximating forms -- 10. Numerical linear approximating forms -- 11. Rank of the m-tuple f1(q) ..., fm(q) -- 12. Proof of the First Fundamental Theorem -- 13. Consequences of the First Fundamental Theorem -- Remarks. Chapter 4. Transcendence and algebraic independence of the values of F-functions which are connected by algebraic equations over the field of rational functions -- 1. Rank of the m-tuple f1(q) ..., fm(q) -- 2. Some lemmas -- 3. Estimate for the dimension of a vector space spanned by monomials in elements of a field extension -- 4. The Third Fundamental Theorem -- 5. Transcendence of the values of F-functions connected by arbitrary algebraic equations over C(z) -- 6. Algebraic independence of the values of E-functions which are connected by arbitrary algebraic equations over C(z) |
ctrlnum | (OCoLC)815506591 |
dewey-full | 512.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.73 |
dewey-search | 512.73 |
dewey-sort | 3512.73 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05355cam a2200625 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn815506591</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">011211s1989 gw ob 000 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">N$T</subfield><subfield code="d">DEBBG</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">AZK</subfield><subfield code="d">NOC</subfield><subfield code="d">UIU</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">COCUF</subfield><subfield code="d">NRAMU</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">K6U</subfield><subfield code="d">INARC</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">BTN</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961625893</subfield><subfield code="a">962644781</subfield><subfield code="a">992841595</subfield><subfield code="a">1058472357</subfield><subfield code="a">1097098328</subfield><subfield code="a">1162192952</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110889055</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110889056</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110115680</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110889055</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815506591</subfield><subfield code="z">(OCoLC)961625893</subfield><subfield code="z">(OCoLC)962644781</subfield><subfield code="z">(OCoLC)992841595</subfield><subfield code="z">(OCoLC)1058472357</subfield><subfield code="z">(OCoLC)1097098328</subfield><subfield code="z">(OCoLC)1162192952</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA247.5</subfield><subfield code="b">.S5513 1989eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">002040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">512.73</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shidlovskiĭ, A. B.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transcendental numbers /</subfield><subfield code="c">Andrei Borisovich Shidlovskii ; with a foreword by W. Dale Brownawell ; translated from the Russian by Neal Koblitz.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin :</subfield><subfield code="b">W. de Gruyter,</subfield><subfield code="c">1989.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xix, 466 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">12</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Foreword -- Preface to the English edition -- Preface -- Notation -- Introduction -- 1. Approximation of algebraic numbers -- 2. The classical method of Hermite-Lindemann -- 3. Methods arising from the solution of Hilbert's Seventh Problem, and their subsequent development -- 4. Siegel's method and its further development -- Chapter 1. Approximation of real and algebraic numbers -- 1. Approximation of real numbers by algebraic numbers -- 2. Simultaneous approximation -- 3. Approximation of algebraic numbers by rational numbers.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Approximation of algebraic numbers by algebraic numbers -- 5. Further refinements and generalizations of Liouville's Theorem -- Remarks -- Chapter 2. Arithmetic properties of the values of the exponential function at algebraic points -- 1. Transcendence of e -- 2. Transcendence of s -- 3. Transcendence of the values of the exponential function at algebraic points -- 4. Approximation of ez by rational functions -- 5. Linear approximating forms for eu1z ..., eumz -- 6. A set of linear approximating forms -- 7. Lindemann's Theorem.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. Linear approximating forms and the Newton interpolation series for the exponential function -- Remarks -- Chapter 3. Transcendence and algebraic independence of the values of F-functions which are not connected by algebraic equations over the field of rational functions -- 1. E-functions -- 2. The First Fundamental Theorem -- 3. Some properties of linear and fractional-linear forms -- 4. Properties of linear forms in functions which satisfy a system of homogeneous linear differential equations -- 5. Order of zero of a linear form at z = 0.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. The determinant of a set of linear forms -- 7. Passing to linearly independent numerical linear forms -- 8. Auxiliary lemmas on solutions of systems of homogeneous linear equations -- 9. Functional linear approximating forms -- 10. Numerical linear approximating forms -- 11. Rank of the m-tuple f1(q) ..., fm(q) -- 12. Proof of the First Fundamental Theorem -- 13. Consequences of the First Fundamental Theorem -- Remarks.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 4. Transcendence and algebraic independence of the values of F-functions which are connected by algebraic equations over the field of rational functions -- 1. Rank of the m-tuple f1(q) ..., fm(q) -- 2. Some lemmas -- 3. Estimate for the dimension of a vector space spanned by monomials in elements of a field extension -- 4. The Third Fundamental Theorem -- 5. Transcendence of the values of F-functions connected by arbitrary algebraic equations over C(z) -- 6. Algebraic independence of the values of E-functions which are connected by arbitrary algebraic equations over C(z)</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Transcendental numbers.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093223</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Number theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85093222</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nombres transcendants.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie des nombres.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Algebra</subfield><subfield code="x">Intermediate.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Number theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Transcendental numbers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Koblitz, Neal,</subfield><subfield code="d">1948-</subfield><subfield code="0">http://id.loc.gov/authorities/names/n77004276</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Shidlovskii, Andrei B.</subfield><subfield code="t">Transcendental Numbers.</subfield><subfield code="d">Berlin/Boston : De Gruyter, ©1989</subfield><subfield code="z">9783110115680</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">12.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=558783</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10598044</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">558783</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">transcendentalnu0000shid</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9656600</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn815506591 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:25:01Z |
institution | BVB |
isbn | 9783110889055 3110889056 |
language | English |
oclc_num | 815506591 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xix, 466 pages) |
psigel | ZDB-4-EBA |
publishDate | 1989 |
publishDateSearch | 1989 |
publishDateSort | 1989 |
publisher | W. de Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics ; |
spelling | Shidlovskiĭ, A. B. Transcendental numbers / Andrei Borisovich Shidlovskii ; with a foreword by W. Dale Brownawell ; translated from the Russian by Neal Koblitz. Berlin : W. de Gruyter, 1989. 1 online resource (xix, 466 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier data file De Gruyter studies in mathematics ; 12 Foreword -- Preface to the English edition -- Preface -- Notation -- Introduction -- 1. Approximation of algebraic numbers -- 2. The classical method of Hermite-Lindemann -- 3. Methods arising from the solution of Hilbert's Seventh Problem, and their subsequent development -- 4. Siegel's method and its further development -- Chapter 1. Approximation of real and algebraic numbers -- 1. Approximation of real numbers by algebraic numbers -- 2. Simultaneous approximation -- 3. Approximation of algebraic numbers by rational numbers. 4. Approximation of algebraic numbers by algebraic numbers -- 5. Further refinements and generalizations of Liouville's Theorem -- Remarks -- Chapter 2. Arithmetic properties of the values of the exponential function at algebraic points -- 1. Transcendence of e -- 2. Transcendence of s -- 3. Transcendence of the values of the exponential function at algebraic points -- 4. Approximation of ez by rational functions -- 5. Linear approximating forms for eu1z ..., eumz -- 6. A set of linear approximating forms -- 7. Lindemann's Theorem. 8. Linear approximating forms and the Newton interpolation series for the exponential function -- Remarks -- Chapter 3. Transcendence and algebraic independence of the values of F-functions which are not connected by algebraic equations over the field of rational functions -- 1. E-functions -- 2. The First Fundamental Theorem -- 3. Some properties of linear and fractional-linear forms -- 4. Properties of linear forms in functions which satisfy a system of homogeneous linear differential equations -- 5. Order of zero of a linear form at z = 0. 6. The determinant of a set of linear forms -- 7. Passing to linearly independent numerical linear forms -- 8. Auxiliary lemmas on solutions of systems of homogeneous linear equations -- 9. Functional linear approximating forms -- 10. Numerical linear approximating forms -- 11. Rank of the m-tuple f1(q) ..., fm(q) -- 12. Proof of the First Fundamental Theorem -- 13. Consequences of the First Fundamental Theorem -- Remarks. Chapter 4. Transcendence and algebraic independence of the values of F-functions which are connected by algebraic equations over the field of rational functions -- 1. Rank of the m-tuple f1(q) ..., fm(q) -- 2. Some lemmas -- 3. Estimate for the dimension of a vector space spanned by monomials in elements of a field extension -- 4. The Third Fundamental Theorem -- 5. Transcendence of the values of F-functions connected by arbitrary algebraic equations over C(z) -- 6. Algebraic independence of the values of E-functions which are connected by arbitrary algebraic equations over C(z) Includes bibliographical references. English. Transcendental numbers. http://id.loc.gov/authorities/subjects/sh85093223 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Nombres transcendants. Théorie des nombres. MATHEMATICS Algebra Intermediate. bisacsh Number theory fast Transcendental numbers fast Koblitz, Neal, 1948- http://id.loc.gov/authorities/names/n77004276 Print version: Shidlovskii, Andrei B. Transcendental Numbers. Berlin/Boston : De Gruyter, ©1989 9783110115680 De Gruyter studies in mathematics ; 12. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=558783 Volltext |
spellingShingle | Shidlovskiĭ, A. B. Transcendental numbers / De Gruyter studies in mathematics ; Foreword -- Preface to the English edition -- Preface -- Notation -- Introduction -- 1. Approximation of algebraic numbers -- 2. The classical method of Hermite-Lindemann -- 3. Methods arising from the solution of Hilbert's Seventh Problem, and their subsequent development -- 4. Siegel's method and its further development -- Chapter 1. Approximation of real and algebraic numbers -- 1. Approximation of real numbers by algebraic numbers -- 2. Simultaneous approximation -- 3. Approximation of algebraic numbers by rational numbers. 4. Approximation of algebraic numbers by algebraic numbers -- 5. Further refinements and generalizations of Liouville's Theorem -- Remarks -- Chapter 2. Arithmetic properties of the values of the exponential function at algebraic points -- 1. Transcendence of e -- 2. Transcendence of s -- 3. Transcendence of the values of the exponential function at algebraic points -- 4. Approximation of ez by rational functions -- 5. Linear approximating forms for eu1z ..., eumz -- 6. A set of linear approximating forms -- 7. Lindemann's Theorem. 8. Linear approximating forms and the Newton interpolation series for the exponential function -- Remarks -- Chapter 3. Transcendence and algebraic independence of the values of F-functions which are not connected by algebraic equations over the field of rational functions -- 1. E-functions -- 2. The First Fundamental Theorem -- 3. Some properties of linear and fractional-linear forms -- 4. Properties of linear forms in functions which satisfy a system of homogeneous linear differential equations -- 5. Order of zero of a linear form at z = 0. 6. The determinant of a set of linear forms -- 7. Passing to linearly independent numerical linear forms -- 8. Auxiliary lemmas on solutions of systems of homogeneous linear equations -- 9. Functional linear approximating forms -- 10. Numerical linear approximating forms -- 11. Rank of the m-tuple f1(q) ..., fm(q) -- 12. Proof of the First Fundamental Theorem -- 13. Consequences of the First Fundamental Theorem -- Remarks. Chapter 4. Transcendence and algebraic independence of the values of F-functions which are connected by algebraic equations over the field of rational functions -- 1. Rank of the m-tuple f1(q) ..., fm(q) -- 2. Some lemmas -- 3. Estimate for the dimension of a vector space spanned by monomials in elements of a field extension -- 4. The Third Fundamental Theorem -- 5. Transcendence of the values of F-functions connected by arbitrary algebraic equations over C(z) -- 6. Algebraic independence of the values of E-functions which are connected by arbitrary algebraic equations over C(z) Transcendental numbers. http://id.loc.gov/authorities/subjects/sh85093223 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Nombres transcendants. Théorie des nombres. MATHEMATICS Algebra Intermediate. bisacsh Number theory fast Transcendental numbers fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85093223 http://id.loc.gov/authorities/subjects/sh85093222 |
title | Transcendental numbers / |
title_auth | Transcendental numbers / |
title_exact_search | Transcendental numbers / |
title_full | Transcendental numbers / Andrei Borisovich Shidlovskii ; with a foreword by W. Dale Brownawell ; translated from the Russian by Neal Koblitz. |
title_fullStr | Transcendental numbers / Andrei Borisovich Shidlovskii ; with a foreword by W. Dale Brownawell ; translated from the Russian by Neal Koblitz. |
title_full_unstemmed | Transcendental numbers / Andrei Borisovich Shidlovskii ; with a foreword by W. Dale Brownawell ; translated from the Russian by Neal Koblitz. |
title_short | Transcendental numbers / |
title_sort | transcendental numbers |
topic | Transcendental numbers. http://id.loc.gov/authorities/subjects/sh85093223 Number theory. http://id.loc.gov/authorities/subjects/sh85093222 Nombres transcendants. Théorie des nombres. MATHEMATICS Algebra Intermediate. bisacsh Number theory fast Transcendental numbers fast |
topic_facet | Transcendental numbers. Number theory. Nombres transcendants. Théorie des nombres. MATHEMATICS Algebra Intermediate. Number theory Transcendental numbers |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=558783 |
work_keys_str_mv | AT shidlovskiiab transcendentalnumbers AT koblitzneal transcendentalnumbers |