Ordinary differential equations /:
Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine...
Saved in:
Main Author: | |
---|---|
Format: | Electronic eBook |
Language: | English |
Published: |
Oxford :
Elsevier,
1996.
|
Series: | Modular mathematics series.
|
Subjects: | |
Online Access: | DE-862 DE-863 |
Summary: | Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further. |
Physical Description: | 1 online resource (vii, 222 pages) : illustrations |
Bibliography: | Includes bibliographical references and index. |
ISBN: | 9780080928678 0080928676 1283619628 9781283619622 9786613932075 6613932078 |
Staff View
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn815471213 | ||
003 | OCoLC | ||
005 | 20250103110447.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 121005s1996 enka ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCQ |d N$T |d OCLCF |d OCLCQ |d YDXCP |d OCLCQ |d AGLDB |d OCLCQ |d VTS |d NLE |d UKMGB |d STF |d M8D |d OCLCQ |d K6U |d VLY |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
015 | |a GBB6F5334 |2 bnb | ||
015 | |a GBB6H5924 |2 bnb | ||
016 | 7 | |a 017811181 |2 Uk | |
016 | 7 | |a 017593350 |2 Uk | |
019 | |a 1125214571 |a 1162556548 |a 1241903272 |a 1300616582 | ||
020 | |a 9780080928678 |q (electronic bk.) | ||
020 | |a 0080928676 |q (electronic bk.) | ||
020 | |z 0340632038 | ||
020 | |z 9780340632031 | ||
020 | |a 1283619628 | ||
020 | |a 9781283619622 | ||
020 | |a 9786613932075 | ||
020 | |a 6613932078 | ||
035 | |a (OCoLC)815471213 |z (OCoLC)1125214571 |z (OCoLC)1162556548 |z (OCoLC)1241903272 |z (OCoLC)1300616582 | ||
037 | |a 9780080928678 |b Ingram Content Group | ||
050 | 4 | |a QA372 |b .C69 1996eb | |
072 | 7 | |a MAT |x 007010 |2 bisacsh | |
082 | 7 | |a 515.352 |2 20 | |
049 | |a MAIN | ||
100 | 1 | |a Cox, W. | |
245 | 1 | 0 | |a Ordinary differential equations / |c W. Cox. |
260 | |a Oxford : |b Elsevier, |c 1996. | ||
300 | |a 1 online resource (vii, 222 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a text file |2 rda | ||
490 | 1 | |a Modular mathematics series | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Introduction and a look ahead * First order differential equations -- Methods and models * First order differential equations -- Analysis and approximation * Second and higher order homogenous equations * Inhomogenous linear differential equations * Laplace transform methods for solving initial value problems * Systems of linear differential equations * Series solution of linear differential equations * Special functions and orthogonal expansions * An introduction to nonlinear systems * Appendix -- Chapter summaries * Answers to exercises * Bibliography * Index. | |
520 | |a Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further. | ||
546 | |a English. | ||
650 | 0 | |a Differential equations. |0 http://id.loc.gov/authorities/subjects/sh85037890 | |
650 | 6 | |a Équations différentielles. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Ordinary. |2 bisacsh | |
650 | 7 | |a Differential equations |2 fast | |
776 | |z 0-340-63203-8 | ||
830 | 0 | |a Modular mathematics series. |0 http://id.loc.gov/authorities/names/no96016632 | |
966 | 4 | 0 | |l DE-862 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=574263 |3 Volltext |
966 | 4 | 0 | |l DE-863 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=574263 |3 Volltext |
938 | |a ebrary |b EBRY |n ebr10606270 | ||
938 | |a EBSCOhost |b EBSC |n 574263 | ||
938 | |a YBP Library Services |b YANK |n 9753133 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-862 | ||
049 | |a DE-863 |
Record in the Search Index
DE-BY-FWS_katkey | ZDB-4-EBA-ocn815471213 |
---|---|
_version_ | 1829094939547402240 |
adam_text | |
any_adam_object | |
author | Cox, W. |
author_facet | Cox, W. |
author_role | |
author_sort | Cox, W. |
author_variant | w c wc |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA372 |
callnumber-raw | QA372 .C69 1996eb |
callnumber-search | QA372 .C69 1996eb |
callnumber-sort | QA 3372 C69 41996EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Introduction and a look ahead * First order differential equations -- Methods and models * First order differential equations -- Analysis and approximation * Second and higher order homogenous equations * Inhomogenous linear differential equations * Laplace transform methods for solving initial value problems * Systems of linear differential equations * Series solution of linear differential equations * Special functions and orthogonal expansions * An introduction to nonlinear systems * Appendix -- Chapter summaries * Answers to exercises * Bibliography * Index. |
ctrlnum | (OCoLC)815471213 |
dewey-full | 515.352 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.352 |
dewey-search | 515.352 |
dewey-sort | 3515.352 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03416cam a2200625Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn815471213</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20250103110447.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">121005s1996 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">NLE</subfield><subfield code="d">UKMGB</subfield><subfield code="d">STF</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">K6U</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB6F5334</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB6H5924</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">017811181</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">017593350</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">1125214571</subfield><subfield code="a">1162556548</subfield><subfield code="a">1241903272</subfield><subfield code="a">1300616582</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080928678</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080928676</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0340632038</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780340632031</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283619628</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283619622</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613932075</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613932078</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)815471213</subfield><subfield code="z">(OCoLC)1125214571</subfield><subfield code="z">(OCoLC)1162556548</subfield><subfield code="z">(OCoLC)1241903272</subfield><subfield code="z">(OCoLC)1300616582</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">9780080928678</subfield><subfield code="b">Ingram Content Group</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA372</subfield><subfield code="b">.C69 1996eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">20</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cox, W.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ordinary differential equations /</subfield><subfield code="c">W. Cox.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford :</subfield><subfield code="b">Elsevier,</subfield><subfield code="c">1996.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 222 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Modular mathematics series</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Introduction and a look ahead * First order differential equations -- Methods and models * First order differential equations -- Analysis and approximation * Second and higher order homogenous equations * Inhomogenous linear differential equations * Laplace transform methods for solving initial value problems * Systems of linear differential equations * Series solution of linear differential equations * Special functions and orthogonal expansions * An introduction to nonlinear systems * Appendix -- Chapter summaries * Answers to exercises * Bibliography * Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037890</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Ordinary.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">0-340-63203-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Modular mathematics series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no96016632</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-862</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=574263</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="4" ind2="0"><subfield code="l">DE-863</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=574263</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10606270</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">574263</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9753133</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn815471213 |
illustrated | Illustrated |
indexdate | 2025-04-11T08:41:06Z |
institution | BVB |
isbn | 9780080928678 0080928676 1283619628 9781283619622 9786613932075 6613932078 |
language | English |
oclc_num | 815471213 |
open_access_boolean | |
owner | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | MAIN DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 online resource (vii, 222 pages) : illustrations |
psigel | ZDB-4-EBA FWS_PDA_EBA ZDB-4-EBA |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Elsevier, |
record_format | marc |
series | Modular mathematics series. |
series2 | Modular mathematics series |
spelling | Cox, W. Ordinary differential equations / W. Cox. Oxford : Elsevier, 1996. 1 online resource (vii, 222 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier text file rda Modular mathematics series Includes bibliographical references and index. Introduction and a look ahead * First order differential equations -- Methods and models * First order differential equations -- Analysis and approximation * Second and higher order homogenous equations * Inhomogenous linear differential equations * Laplace transform methods for solving initial value problems * Systems of linear differential equations * Series solution of linear differential equations * Special functions and orthogonal expansions * An introduction to nonlinear systems * Appendix -- Chapter summaries * Answers to exercises * Bibliography * Index. Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further. English. Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Équations différentielles. MATHEMATICS Differential Equations Ordinary. bisacsh Differential equations fast 0-340-63203-8 Modular mathematics series. http://id.loc.gov/authorities/names/no96016632 |
spellingShingle | Cox, W. Ordinary differential equations / Modular mathematics series. Introduction and a look ahead * First order differential equations -- Methods and models * First order differential equations -- Analysis and approximation * Second and higher order homogenous equations * Inhomogenous linear differential equations * Laplace transform methods for solving initial value problems * Systems of linear differential equations * Series solution of linear differential equations * Special functions and orthogonal expansions * An introduction to nonlinear systems * Appendix -- Chapter summaries * Answers to exercises * Bibliography * Index. Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Équations différentielles. MATHEMATICS Differential Equations Ordinary. bisacsh Differential equations fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85037890 |
title | Ordinary differential equations / |
title_auth | Ordinary differential equations / |
title_exact_search | Ordinary differential equations / |
title_full | Ordinary differential equations / W. Cox. |
title_fullStr | Ordinary differential equations / W. Cox. |
title_full_unstemmed | Ordinary differential equations / W. Cox. |
title_short | Ordinary differential equations / |
title_sort | ordinary differential equations |
topic | Differential equations. http://id.loc.gov/authorities/subjects/sh85037890 Équations différentielles. MATHEMATICS Differential Equations Ordinary. bisacsh Differential equations fast |
topic_facet | Differential equations. Équations différentielles. MATHEMATICS Differential Equations Ordinary. Differential equations |
work_keys_str_mv | AT coxw ordinarydifferentialequations |