Chaos and fractals :: an elementary introduction /
For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata.
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Oxford :
Oxford University Press,
2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata. |
Beschreibung: | 1 online resource (xxi, 408 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9780191637520 0191637521 6613956384 9786613956385 128364388X 9781283643887 9780191774966 0191774960 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn812197926 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 121008s2012 enka ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d E7B |d YDXCP |d EBLCP |d OCLCQ |d DEBSZ |d OTZ |d OCLCF |d OCLCQ |d CDX |d UIU |d IDEBK |d MHW |d MEAUC |d OCLCQ |d STBDS |d JBG |d COCUF |d CNNOR |d MERUC |d K6U |d AGLDB |d ICG |d LOA |d STF |d PIFAG |d FVL |d OCLCQ |d ZCU |d U3W |d D6H |d WRM |d OCLCQ |d VTS |d CEF |d INT |d VT2 |d WYU |d OCLCQ |d A6Q |d AUW |d BTN |d INTCL |d SNK |d DKC |d OCLCQ |d HS0 |d OCLCQ |d SNU |d UKCRE |d NLE |d SXB |d OCLCQ |d SFB |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
015 | |a GBB239660 |2 bnb | ||
016 | 7 | |a 016072071 |2 Uk | |
019 | |a 812786760 |a 813397853 |a 817822645 |a 982068111 |a 991896956 |a 1029502237 |a 1037729101 |a 1038703335 |a 1055314952 |a 1066610303 |a 1081278584 |a 1083556120 |a 1148087938 |a 1181162601 |a 1181634281 |a 1228554016 | ||
020 | |a 9780191637520 |q (electronic bk.) | ||
020 | |a 0191637521 |q (electronic bk.) | ||
020 | |a 6613956384 | ||
020 | |a 9786613956385 | ||
020 | |a 128364388X | ||
020 | |a 9781283643887 | ||
020 | |a 9780191774966 |q (ebook) | ||
020 | |a 0191774960 | ||
020 | |z 9780199566433 | ||
020 | |z 0199566437 | ||
020 | |z 9780199566440 | ||
020 | |z 0199566445 | ||
035 | |a (OCoLC)812197926 |z (OCoLC)812786760 |z (OCoLC)813397853 |z (OCoLC)817822645 |z (OCoLC)982068111 |z (OCoLC)991896956 |z (OCoLC)1029502237 |z (OCoLC)1037729101 |z (OCoLC)1038703335 |z (OCoLC)1055314952 |z (OCoLC)1066610303 |z (OCoLC)1081278584 |z (OCoLC)1083556120 |z (OCoLC)1148087938 |z (OCoLC)1181162601 |z (OCoLC)1181634281 |z (OCoLC)1228554016 | ||
050 | 4 | |a QA614.86 | |
072 | 7 | |a MAT |x 038000 |2 bisacsh | |
082 | 7 | |a 514.742 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Feldman, David P. | |
245 | 1 | 0 | |a Chaos and fractals : |b an elementary introduction / |c David P. Feldman. |
260 | |a Oxford : |b Oxford University Press, |c 2012. | ||
300 | |a 1 online resource (xxi, 408 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
588 | 0 | |a Print version record. | |
520 | 8 | |a For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata. | |
505 | 0 | |a Cover; Contents; I: Introducing Discrete Dynamical Systems; 0 Opening Remarks; 0.1 Chaos; 0.2 Fractals; 0.3 The Character of Chaos and Fractals; 1 Functions; 1.1 Functions as Actions; 1.2 Functions as a Formula; 1.3 Functions are Deterministic; 1.4 Functions as Graphs; 1.5 Functions as Maps; Exercises; 2 Iterating Functions; 2.1 The Idea of Iteration; 2.2 Some Vocabulary and Notation; 2.3 Iterated Function Notation; 2.4 Algebraic Expressions for Iterated Functions; 2.5 Why Iteration?; Exercises; 3 Qualitative Dynamics: The Fate of the Orbit; 3.1 Dynamical Systems. | |
505 | 8 | |a 3.2 Dynamics of the Squaring Function3.3 The Phase Line; 3.4 Fixed Points via Algebra; 3.5 Fixed Points Graphically; 3.6 Types of Fixed Points; Exercises; 4 Time Series Plots; 4.1 Examples of Time Series Plots; Exercises; 5 Graphical Iteration; 5.1 An Initial Example; 5.2 The Method of Graphical Iteration; 5.3 Further Examples; Exercises; 6 Iterating Linear Functions; 6.1 A Series of Examples; 6.2 Slopes of +1 or -1; Exercises; 7 Population Models; 7.1 Exponential Growth; 7.2 Modifying the Exponential Growth Model; 7.3 The Logistic Equation; 7.4 A Note on the Importance of Stability. | |
505 | 8 | |a 7.5 Other r ValuesExercises; 8 Newton, Laplace, and Determinism; 8.1 Newton and Universal Mechanics; 8.2 The Enlightenment and Optimism; 8.3 Causality and Laplace's Demon; 8.4 Science Today; 8.5 A Look Ahead; II: Chaos; 9 Chaos and the Logistic Equation; 9.1 Periodic Behavior; 9.2 Aperiodic Behavior; 9.3 Chaos Defined; 9.4 Implications of Aperiodic Behavior; Exercises; 10 The Butterfly Effect; 10.1 Stable Periodic Behavior; 10.2 Sensitive Dependence on Initial Conditions; 10.3 SDIC Defined; 10.4 Lyapunov Exponents; 10.5 Stretching and Folding: Ingredients for Chaos. | |
505 | 8 | |a 10.6 Chaotic Numerics: The Shadowing LemmaExercises; 11 The Bifurcation Diagram; 11.1 A Collection of Final-State Diagrams; 11.2 Periodic Windows; 11.3 Bifurcation Diagram Summary; Exercises; 12 Universality; 12.1 Bifurcation Diagrams for Other Functions; 12.2 Universality of Period Doubling; 12.3 Physical Consequences of Universality; 12.4 Renormalization and Universality; 12.5 How are Higher-Dimensional Phenomena Universal?; Exercises; 13 Statistical Stability of Chaos; 13.1 Histograms of Periodic Orbits; 13.2 Histograms of Chaotic Orbits; 13.3 Ergodicity; 13.4 Predictable Unpredictability. | |
505 | 8 | |a Exercises14 Determinism, Randomness, and Nonlinearity; 14.1 Symbolic Dynamics; 14.2 Chaotic Systems as Sources of Randomness; 14.3 Randomness?; 14.4 Linearity, Nonlinearity, and Reductionism; 14.5 Summary and a Look Ahead; Exercises; III: Fractals; 15 Introducing Fractals; 15.1 Shapes; 15.2 Self-Similarity; 15.3 Typical Size?; 15.4 Mathematical vs. Real Fractals; Exercises; 16 Dimensions; 16.1 How Many Little Things Fit inside a Big Thing?; 16.2 The Dimension of the Snowflake; 16.3 What does D ≈ 1.46497 Mean?; 16.4 The Dimension of the Cantor Set; 16.5 The Dimension of the Sierpiński Triangle. | |
546 | |a English. | ||
650 | 0 | |a Fractals. |0 http://id.loc.gov/authorities/subjects/sh85051147 | |
650 | 0 | |a Chaotic behavior in systems. |0 http://id.loc.gov/authorities/subjects/sh85022562 | |
650 | 6 | |a Fractales. | |
650 | 6 | |a Chaos. | |
650 | 7 | |a fractals. |2 aat | |
650 | 7 | |a MATHEMATICS |x Topology. |2 bisacsh | |
650 | 7 | |a Chaotic behavior in systems |2 fast | |
650 | 7 | |a Fractals |2 fast | |
758 | |i has work: |a Chaos and fractals (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGtRYxjv3DjG7dHdbGDqjP |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Feldman, David P. |t Chaos and fractals. |d Oxford : Oxford University Press, 2012 |z 9780199566433 |w (OCoLC)792747080 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=490093 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL7037204 | ||
938 | |a Coutts Information Services |b COUT |n 23616204 |c 55.00 GBP | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL1043133 | ||
938 | |a ebrary |b EBRY |n ebr10610326 | ||
938 | |a EBSCOhost |b EBSC |n 490093 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 395638 | ||
938 | |a Oxford University Press USA |b OUPR |n EDZ0000168230 | ||
938 | |a YBP Library Services |b YANK |n 11260542 | ||
938 | |a YBP Library Services |b YANK |n 9794185 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn812197926 |
---|---|
_version_ | 1816882210695806976 |
adam_text | |
any_adam_object | |
author | Feldman, David P. |
author_facet | Feldman, David P. |
author_role | |
author_sort | Feldman, David P. |
author_variant | d p f dp dpf |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA614 |
callnumber-raw | QA614.86 |
callnumber-search | QA614.86 |
callnumber-sort | QA 3614.86 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; Contents; I: Introducing Discrete Dynamical Systems; 0 Opening Remarks; 0.1 Chaos; 0.2 Fractals; 0.3 The Character of Chaos and Fractals; 1 Functions; 1.1 Functions as Actions; 1.2 Functions as a Formula; 1.3 Functions are Deterministic; 1.4 Functions as Graphs; 1.5 Functions as Maps; Exercises; 2 Iterating Functions; 2.1 The Idea of Iteration; 2.2 Some Vocabulary and Notation; 2.3 Iterated Function Notation; 2.4 Algebraic Expressions for Iterated Functions; 2.5 Why Iteration?; Exercises; 3 Qualitative Dynamics: The Fate of the Orbit; 3.1 Dynamical Systems. 3.2 Dynamics of the Squaring Function3.3 The Phase Line; 3.4 Fixed Points via Algebra; 3.5 Fixed Points Graphically; 3.6 Types of Fixed Points; Exercises; 4 Time Series Plots; 4.1 Examples of Time Series Plots; Exercises; 5 Graphical Iteration; 5.1 An Initial Example; 5.2 The Method of Graphical Iteration; 5.3 Further Examples; Exercises; 6 Iterating Linear Functions; 6.1 A Series of Examples; 6.2 Slopes of +1 or -1; Exercises; 7 Population Models; 7.1 Exponential Growth; 7.2 Modifying the Exponential Growth Model; 7.3 The Logistic Equation; 7.4 A Note on the Importance of Stability. 7.5 Other r ValuesExercises; 8 Newton, Laplace, and Determinism; 8.1 Newton and Universal Mechanics; 8.2 The Enlightenment and Optimism; 8.3 Causality and Laplace's Demon; 8.4 Science Today; 8.5 A Look Ahead; II: Chaos; 9 Chaos and the Logistic Equation; 9.1 Periodic Behavior; 9.2 Aperiodic Behavior; 9.3 Chaos Defined; 9.4 Implications of Aperiodic Behavior; Exercises; 10 The Butterfly Effect; 10.1 Stable Periodic Behavior; 10.2 Sensitive Dependence on Initial Conditions; 10.3 SDIC Defined; 10.4 Lyapunov Exponents; 10.5 Stretching and Folding: Ingredients for Chaos. 10.6 Chaotic Numerics: The Shadowing LemmaExercises; 11 The Bifurcation Diagram; 11.1 A Collection of Final-State Diagrams; 11.2 Periodic Windows; 11.3 Bifurcation Diagram Summary; Exercises; 12 Universality; 12.1 Bifurcation Diagrams for Other Functions; 12.2 Universality of Period Doubling; 12.3 Physical Consequences of Universality; 12.4 Renormalization and Universality; 12.5 How are Higher-Dimensional Phenomena Universal?; Exercises; 13 Statistical Stability of Chaos; 13.1 Histograms of Periodic Orbits; 13.2 Histograms of Chaotic Orbits; 13.3 Ergodicity; 13.4 Predictable Unpredictability. Exercises14 Determinism, Randomness, and Nonlinearity; 14.1 Symbolic Dynamics; 14.2 Chaotic Systems as Sources of Randomness; 14.3 Randomness?; 14.4 Linearity, Nonlinearity, and Reductionism; 14.5 Summary and a Look Ahead; Exercises; III: Fractals; 15 Introducing Fractals; 15.1 Shapes; 15.2 Self-Similarity; 15.3 Typical Size?; 15.4 Mathematical vs. Real Fractals; Exercises; 16 Dimensions; 16.1 How Many Little Things Fit inside a Big Thing?; 16.2 The Dimension of the Snowflake; 16.3 What does D ≈ 1.46497 Mean?; 16.4 The Dimension of the Cantor Set; 16.5 The Dimension of the Sierpiński Triangle. |
ctrlnum | (OCoLC)812197926 |
dewey-full | 514.742 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.742 |
dewey-search | 514.742 |
dewey-sort | 3514.742 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06821cam a2200793 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn812197926</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">121008s2012 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">UIU</subfield><subfield code="d">IDEBK</subfield><subfield code="d">MHW</subfield><subfield code="d">MEAUC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STBDS</subfield><subfield code="d">JBG</subfield><subfield code="d">COCUF</subfield><subfield code="d">CNNOR</subfield><subfield code="d">MERUC</subfield><subfield code="d">K6U</subfield><subfield code="d">AGLDB</subfield><subfield code="d">ICG</subfield><subfield code="d">LOA</subfield><subfield code="d">STF</subfield><subfield code="d">PIFAG</subfield><subfield code="d">FVL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ZCU</subfield><subfield code="d">U3W</subfield><subfield code="d">D6H</subfield><subfield code="d">WRM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VTS</subfield><subfield code="d">CEF</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">A6Q</subfield><subfield code="d">AUW</subfield><subfield code="d">BTN</subfield><subfield code="d">INTCL</subfield><subfield code="d">SNK</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HS0</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SNU</subfield><subfield code="d">UKCRE</subfield><subfield code="d">NLE</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB239660</subfield><subfield code="2">bnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">016072071</subfield><subfield code="2">Uk</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">812786760</subfield><subfield code="a">813397853</subfield><subfield code="a">817822645</subfield><subfield code="a">982068111</subfield><subfield code="a">991896956</subfield><subfield code="a">1029502237</subfield><subfield code="a">1037729101</subfield><subfield code="a">1038703335</subfield><subfield code="a">1055314952</subfield><subfield code="a">1066610303</subfield><subfield code="a">1081278584</subfield><subfield code="a">1083556120</subfield><subfield code="a">1148087938</subfield><subfield code="a">1181162601</subfield><subfield code="a">1181634281</subfield><subfield code="a">1228554016</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191637520</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191637521</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613956384</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613956385</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128364388X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283643887</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780191774966</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0191774960</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199566433</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199566437</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780199566440</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0199566445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)812197926</subfield><subfield code="z">(OCoLC)812786760</subfield><subfield code="z">(OCoLC)813397853</subfield><subfield code="z">(OCoLC)817822645</subfield><subfield code="z">(OCoLC)982068111</subfield><subfield code="z">(OCoLC)991896956</subfield><subfield code="z">(OCoLC)1029502237</subfield><subfield code="z">(OCoLC)1037729101</subfield><subfield code="z">(OCoLC)1038703335</subfield><subfield code="z">(OCoLC)1055314952</subfield><subfield code="z">(OCoLC)1066610303</subfield><subfield code="z">(OCoLC)1081278584</subfield><subfield code="z">(OCoLC)1083556120</subfield><subfield code="z">(OCoLC)1148087938</subfield><subfield code="z">(OCoLC)1181162601</subfield><subfield code="z">(OCoLC)1181634281</subfield><subfield code="z">(OCoLC)1228554016</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA614.86</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">038000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">514.742</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feldman, David P.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaos and fractals :</subfield><subfield code="b">an elementary introduction /</subfield><subfield code="c">David P. Feldman.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Oxford :</subfield><subfield code="b">Oxford University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxi, 408 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="520" ind1="8" ind2=" "><subfield code="a">For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; Contents; I: Introducing Discrete Dynamical Systems; 0 Opening Remarks; 0.1 Chaos; 0.2 Fractals; 0.3 The Character of Chaos and Fractals; 1 Functions; 1.1 Functions as Actions; 1.2 Functions as a Formula; 1.3 Functions are Deterministic; 1.4 Functions as Graphs; 1.5 Functions as Maps; Exercises; 2 Iterating Functions; 2.1 The Idea of Iteration; 2.2 Some Vocabulary and Notation; 2.3 Iterated Function Notation; 2.4 Algebraic Expressions for Iterated Functions; 2.5 Why Iteration?; Exercises; 3 Qualitative Dynamics: The Fate of the Orbit; 3.1 Dynamical Systems.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 Dynamics of the Squaring Function3.3 The Phase Line; 3.4 Fixed Points via Algebra; 3.5 Fixed Points Graphically; 3.6 Types of Fixed Points; Exercises; 4 Time Series Plots; 4.1 Examples of Time Series Plots; Exercises; 5 Graphical Iteration; 5.1 An Initial Example; 5.2 The Method of Graphical Iteration; 5.3 Further Examples; Exercises; 6 Iterating Linear Functions; 6.1 A Series of Examples; 6.2 Slopes of +1 or -1; Exercises; 7 Population Models; 7.1 Exponential Growth; 7.2 Modifying the Exponential Growth Model; 7.3 The Logistic Equation; 7.4 A Note on the Importance of Stability.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.5 Other r ValuesExercises; 8 Newton, Laplace, and Determinism; 8.1 Newton and Universal Mechanics; 8.2 The Enlightenment and Optimism; 8.3 Causality and Laplace's Demon; 8.4 Science Today; 8.5 A Look Ahead; II: Chaos; 9 Chaos and the Logistic Equation; 9.1 Periodic Behavior; 9.2 Aperiodic Behavior; 9.3 Chaos Defined; 9.4 Implications of Aperiodic Behavior; Exercises; 10 The Butterfly Effect; 10.1 Stable Periodic Behavior; 10.2 Sensitive Dependence on Initial Conditions; 10.3 SDIC Defined; 10.4 Lyapunov Exponents; 10.5 Stretching and Folding: Ingredients for Chaos.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.6 Chaotic Numerics: The Shadowing LemmaExercises; 11 The Bifurcation Diagram; 11.1 A Collection of Final-State Diagrams; 11.2 Periodic Windows; 11.3 Bifurcation Diagram Summary; Exercises; 12 Universality; 12.1 Bifurcation Diagrams for Other Functions; 12.2 Universality of Period Doubling; 12.3 Physical Consequences of Universality; 12.4 Renormalization and Universality; 12.5 How are Higher-Dimensional Phenomena Universal?; Exercises; 13 Statistical Stability of Chaos; 13.1 Histograms of Periodic Orbits; 13.2 Histograms of Chaotic Orbits; 13.3 Ergodicity; 13.4 Predictable Unpredictability.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Exercises14 Determinism, Randomness, and Nonlinearity; 14.1 Symbolic Dynamics; 14.2 Chaotic Systems as Sources of Randomness; 14.3 Randomness?; 14.4 Linearity, Nonlinearity, and Reductionism; 14.5 Summary and a Look Ahead; Exercises; III: Fractals; 15 Introducing Fractals; 15.1 Shapes; 15.2 Self-Similarity; 15.3 Typical Size?; 15.4 Mathematical vs. Real Fractals; Exercises; 16 Dimensions; 16.1 How Many Little Things Fit inside a Big Thing?; 16.2 The Dimension of the Snowflake; 16.3 What does D ≈ 1.46497 Mean?; 16.4 The Dimension of the Cantor Set; 16.5 The Dimension of the Sierpiński Triangle.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Fractals.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85051147</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chaotic behavior in systems.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85022562</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Fractales.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Chaos.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">fractals.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Topology.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chaotic behavior in systems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Fractals</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Chaos and fractals (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGtRYxjv3DjG7dHdbGDqjP</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Feldman, David P.</subfield><subfield code="t">Chaos and fractals.</subfield><subfield code="d">Oxford : Oxford University Press, 2012</subfield><subfield code="z">9780199566433</subfield><subfield code="w">(OCoLC)792747080</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=490093</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL7037204</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">23616204</subfield><subfield code="c">55.00 GBP</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL1043133</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10610326</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">490093</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">395638</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Oxford University Press USA</subfield><subfield code="b">OUPR</subfield><subfield code="n">EDZ0000168230</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">11260542</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9794185</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn812197926 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:24:59Z |
institution | BVB |
isbn | 9780191637520 0191637521 6613956384 9786613956385 128364388X 9781283643887 9780191774966 0191774960 |
language | English |
oclc_num | 812197926 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxi, 408 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Oxford University Press, |
record_format | marc |
spelling | Feldman, David P. Chaos and fractals : an elementary introduction / David P. Feldman. Oxford : Oxford University Press, 2012. 1 online resource (xxi, 408 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Print version record. For students with a background in elementary algebra, this text provides a vivid introduction to the key phenomena and ideas of chaos and fractals, including the butterfly effect, strange attractors, fractal dimensions, Julia sets and the Mandelbrot set, power laws, and cellular automata. Cover; Contents; I: Introducing Discrete Dynamical Systems; 0 Opening Remarks; 0.1 Chaos; 0.2 Fractals; 0.3 The Character of Chaos and Fractals; 1 Functions; 1.1 Functions as Actions; 1.2 Functions as a Formula; 1.3 Functions are Deterministic; 1.4 Functions as Graphs; 1.5 Functions as Maps; Exercises; 2 Iterating Functions; 2.1 The Idea of Iteration; 2.2 Some Vocabulary and Notation; 2.3 Iterated Function Notation; 2.4 Algebraic Expressions for Iterated Functions; 2.5 Why Iteration?; Exercises; 3 Qualitative Dynamics: The Fate of the Orbit; 3.1 Dynamical Systems. 3.2 Dynamics of the Squaring Function3.3 The Phase Line; 3.4 Fixed Points via Algebra; 3.5 Fixed Points Graphically; 3.6 Types of Fixed Points; Exercises; 4 Time Series Plots; 4.1 Examples of Time Series Plots; Exercises; 5 Graphical Iteration; 5.1 An Initial Example; 5.2 The Method of Graphical Iteration; 5.3 Further Examples; Exercises; 6 Iterating Linear Functions; 6.1 A Series of Examples; 6.2 Slopes of +1 or -1; Exercises; 7 Population Models; 7.1 Exponential Growth; 7.2 Modifying the Exponential Growth Model; 7.3 The Logistic Equation; 7.4 A Note on the Importance of Stability. 7.5 Other r ValuesExercises; 8 Newton, Laplace, and Determinism; 8.1 Newton and Universal Mechanics; 8.2 The Enlightenment and Optimism; 8.3 Causality and Laplace's Demon; 8.4 Science Today; 8.5 A Look Ahead; II: Chaos; 9 Chaos and the Logistic Equation; 9.1 Periodic Behavior; 9.2 Aperiodic Behavior; 9.3 Chaos Defined; 9.4 Implications of Aperiodic Behavior; Exercises; 10 The Butterfly Effect; 10.1 Stable Periodic Behavior; 10.2 Sensitive Dependence on Initial Conditions; 10.3 SDIC Defined; 10.4 Lyapunov Exponents; 10.5 Stretching and Folding: Ingredients for Chaos. 10.6 Chaotic Numerics: The Shadowing LemmaExercises; 11 The Bifurcation Diagram; 11.1 A Collection of Final-State Diagrams; 11.2 Periodic Windows; 11.3 Bifurcation Diagram Summary; Exercises; 12 Universality; 12.1 Bifurcation Diagrams for Other Functions; 12.2 Universality of Period Doubling; 12.3 Physical Consequences of Universality; 12.4 Renormalization and Universality; 12.5 How are Higher-Dimensional Phenomena Universal?; Exercises; 13 Statistical Stability of Chaos; 13.1 Histograms of Periodic Orbits; 13.2 Histograms of Chaotic Orbits; 13.3 Ergodicity; 13.4 Predictable Unpredictability. Exercises14 Determinism, Randomness, and Nonlinearity; 14.1 Symbolic Dynamics; 14.2 Chaotic Systems as Sources of Randomness; 14.3 Randomness?; 14.4 Linearity, Nonlinearity, and Reductionism; 14.5 Summary and a Look Ahead; Exercises; III: Fractals; 15 Introducing Fractals; 15.1 Shapes; 15.2 Self-Similarity; 15.3 Typical Size?; 15.4 Mathematical vs. Real Fractals; Exercises; 16 Dimensions; 16.1 How Many Little Things Fit inside a Big Thing?; 16.2 The Dimension of the Snowflake; 16.3 What does D ≈ 1.46497 Mean?; 16.4 The Dimension of the Cantor Set; 16.5 The Dimension of the Sierpiński Triangle. English. Fractals. http://id.loc.gov/authorities/subjects/sh85051147 Chaotic behavior in systems. http://id.loc.gov/authorities/subjects/sh85022562 Fractales. Chaos. fractals. aat MATHEMATICS Topology. bisacsh Chaotic behavior in systems fast Fractals fast has work: Chaos and fractals (Text) https://id.oclc.org/worldcat/entity/E39PCGtRYxjv3DjG7dHdbGDqjP https://id.oclc.org/worldcat/ontology/hasWork Print version: Feldman, David P. Chaos and fractals. Oxford : Oxford University Press, 2012 9780199566433 (OCoLC)792747080 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=490093 Volltext |
spellingShingle | Feldman, David P. Chaos and fractals : an elementary introduction / Cover; Contents; I: Introducing Discrete Dynamical Systems; 0 Opening Remarks; 0.1 Chaos; 0.2 Fractals; 0.3 The Character of Chaos and Fractals; 1 Functions; 1.1 Functions as Actions; 1.2 Functions as a Formula; 1.3 Functions are Deterministic; 1.4 Functions as Graphs; 1.5 Functions as Maps; Exercises; 2 Iterating Functions; 2.1 The Idea of Iteration; 2.2 Some Vocabulary and Notation; 2.3 Iterated Function Notation; 2.4 Algebraic Expressions for Iterated Functions; 2.5 Why Iteration?; Exercises; 3 Qualitative Dynamics: The Fate of the Orbit; 3.1 Dynamical Systems. 3.2 Dynamics of the Squaring Function3.3 The Phase Line; 3.4 Fixed Points via Algebra; 3.5 Fixed Points Graphically; 3.6 Types of Fixed Points; Exercises; 4 Time Series Plots; 4.1 Examples of Time Series Plots; Exercises; 5 Graphical Iteration; 5.1 An Initial Example; 5.2 The Method of Graphical Iteration; 5.3 Further Examples; Exercises; 6 Iterating Linear Functions; 6.1 A Series of Examples; 6.2 Slopes of +1 or -1; Exercises; 7 Population Models; 7.1 Exponential Growth; 7.2 Modifying the Exponential Growth Model; 7.3 The Logistic Equation; 7.4 A Note on the Importance of Stability. 7.5 Other r ValuesExercises; 8 Newton, Laplace, and Determinism; 8.1 Newton and Universal Mechanics; 8.2 The Enlightenment and Optimism; 8.3 Causality and Laplace's Demon; 8.4 Science Today; 8.5 A Look Ahead; II: Chaos; 9 Chaos and the Logistic Equation; 9.1 Periodic Behavior; 9.2 Aperiodic Behavior; 9.3 Chaos Defined; 9.4 Implications of Aperiodic Behavior; Exercises; 10 The Butterfly Effect; 10.1 Stable Periodic Behavior; 10.2 Sensitive Dependence on Initial Conditions; 10.3 SDIC Defined; 10.4 Lyapunov Exponents; 10.5 Stretching and Folding: Ingredients for Chaos. 10.6 Chaotic Numerics: The Shadowing LemmaExercises; 11 The Bifurcation Diagram; 11.1 A Collection of Final-State Diagrams; 11.2 Periodic Windows; 11.3 Bifurcation Diagram Summary; Exercises; 12 Universality; 12.1 Bifurcation Diagrams for Other Functions; 12.2 Universality of Period Doubling; 12.3 Physical Consequences of Universality; 12.4 Renormalization and Universality; 12.5 How are Higher-Dimensional Phenomena Universal?; Exercises; 13 Statistical Stability of Chaos; 13.1 Histograms of Periodic Orbits; 13.2 Histograms of Chaotic Orbits; 13.3 Ergodicity; 13.4 Predictable Unpredictability. Exercises14 Determinism, Randomness, and Nonlinearity; 14.1 Symbolic Dynamics; 14.2 Chaotic Systems as Sources of Randomness; 14.3 Randomness?; 14.4 Linearity, Nonlinearity, and Reductionism; 14.5 Summary and a Look Ahead; Exercises; III: Fractals; 15 Introducing Fractals; 15.1 Shapes; 15.2 Self-Similarity; 15.3 Typical Size?; 15.4 Mathematical vs. Real Fractals; Exercises; 16 Dimensions; 16.1 How Many Little Things Fit inside a Big Thing?; 16.2 The Dimension of the Snowflake; 16.3 What does D ≈ 1.46497 Mean?; 16.4 The Dimension of the Cantor Set; 16.5 The Dimension of the Sierpiński Triangle. Fractals. http://id.loc.gov/authorities/subjects/sh85051147 Chaotic behavior in systems. http://id.loc.gov/authorities/subjects/sh85022562 Fractales. Chaos. fractals. aat MATHEMATICS Topology. bisacsh Chaotic behavior in systems fast Fractals fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85051147 http://id.loc.gov/authorities/subjects/sh85022562 |
title | Chaos and fractals : an elementary introduction / |
title_auth | Chaos and fractals : an elementary introduction / |
title_exact_search | Chaos and fractals : an elementary introduction / |
title_full | Chaos and fractals : an elementary introduction / David P. Feldman. |
title_fullStr | Chaos and fractals : an elementary introduction / David P. Feldman. |
title_full_unstemmed | Chaos and fractals : an elementary introduction / David P. Feldman. |
title_short | Chaos and fractals : |
title_sort | chaos and fractals an elementary introduction |
title_sub | an elementary introduction / |
topic | Fractals. http://id.loc.gov/authorities/subjects/sh85051147 Chaotic behavior in systems. http://id.loc.gov/authorities/subjects/sh85022562 Fractales. Chaos. fractals. aat MATHEMATICS Topology. bisacsh Chaotic behavior in systems fast Fractals fast |
topic_facet | Fractals. Chaotic behavior in systems. Fractales. Chaos. fractals. MATHEMATICS Topology. Chaotic behavior in systems Fractals |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=490093 |
work_keys_str_mv | AT feldmandavidp chaosandfractalsanelementaryintroduction |