Riemannian geometry /:
Riemannian Geometry (Degruyter Studies in Mathematics).
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
W. de Gruyter,
1995.
|
Ausgabe: | 2nd rev. ed. |
Schriftenreihe: | De Gruyter studies in mathematics ;
1. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Riemannian Geometry (Degruyter Studies in Mathematics). |
Beschreibung: | 1 online resource (x, 409 pages) : illustrations |
Bibliographie: | Includes bibliographical references (pages 393-402) and index. |
ISBN: | 9783110905120 3110905124 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn811407188 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 950110s1995 gw a ob 001 0 eng d | ||
010 | |z 95002589 | ||
040 | |a E7B |b eng |e pn |c E7B |d N$T |d OCLCF |d OCLCQ |d YDXCP |d COO |d OCLCQ |d AZK |d LOA |d UIU |d AGLDB |d COCUF |d MOR |d PIFAG |d OCLCQ |d U3W |d STF |d WRM |d VTS |d NRAMU |d VT2 |d INT |d WYU |d OCLCQ |d ICG |d AU@ |d OCLCQ |d UKAHL |d OCLCQ |d UKCRE |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 961489692 |a 962644833 |a 974670851 |a 974741915 |a 1018008836 |a 1043591437 |a 1057912652 |a 1077239143 |a 1081231541 |a 1083035410 |a 1153538344 |a 1158246834 |a 1159691927 |a 1178862187 |a 1187186549 |a 1228563092 |a 1249258601 |a 1257357768 |a 1298476765 |a 1298518529 | ||
020 | |a 9783110905120 |q (electronic bk.) | ||
020 | |a 3110905124 |q (electronic bk.) | ||
020 | |z 3110145936 |q (acid-free paper) | ||
020 | |z 9783110145939 | ||
024 | 7 | |a 10.1515/9783110905120 |2 doi | |
035 | |a (OCoLC)811407188 |z (OCoLC)961489692 |z (OCoLC)962644833 |z (OCoLC)974670851 |z (OCoLC)974741915 |z (OCoLC)1018008836 |z (OCoLC)1043591437 |z (OCoLC)1057912652 |z (OCoLC)1077239143 |z (OCoLC)1081231541 |z (OCoLC)1083035410 |z (OCoLC)1153538344 |z (OCoLC)1158246834 |z (OCoLC)1159691927 |z (OCoLC)1178862187 |z (OCoLC)1187186549 |z (OCoLC)1228563092 |z (OCoLC)1249258601 |z (OCoLC)1257357768 |z (OCoLC)1298476765 |z (OCoLC)1298518529 | ||
050 | 4 | |a QA649 |b .K544 1995eb | |
072 | 7 | |a MAT |x 012020 |2 bisacsh | |
082 | 7 | |a 516.3/73 |2 20 | |
049 | |a MAIN | ||
100 | 1 | |a Klingenberg, Wilhelm, |d 1924-2010. |1 https://id.oclc.org/worldcat/entity/E39PBJrKVp74DCJ7MgGmtXfyVC |0 http://id.loc.gov/authorities/names/n82072830 | |
245 | 1 | 0 | |a Riemannian geometry / |c Wilhelm P.A. Klingenberg. |
250 | |a 2nd rev. ed. | ||
260 | |a Berlin ; |a New York : |b W. de Gruyter, |c 1995. | ||
300 | |a 1 online resource (x, 409 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
347 | |a data file |2 rda | ||
490 | 1 | |a De Gruyter studies in mathematics ; |v 1 | |
504 | |a Includes bibliographical references (pages 393-402) and index. | ||
505 | 0 | |a 2.4 The Loop Space and the Space of Closed Curves2.5 The Second Order Neighborhood of a Critical Point; 2.5 Appendix -- The S1- and the Z2-action on AM; 2.6 Index and Curvature; 2.6 Appendix -- The Injectivity Radius for 1/4-pinched Manifolds; 2.7 Comparison Theorems for Triangles; 2.8 The Sphere Theorem; 2.9 Non-compact Manifolds of Positive Curvature; Chapter 3: Structure of the Geodesic Flow; 3.1 Hamiltonian Systems; 3.2 Properties of the Geodesic Flow; 3.3 Stable and Unstable Motions; 3.4 Geodesics on Surfaces; 3.5 Geodesics on the Ellipsoid; 3.6 Closed Geodesies on Spheres. | |
505 | 0 | |a 3.7 The Theorem of the Three Closed Geodesics3.8 Manifolds of Non-Positive Curvature; 3.9 The Geodesic Flow on Manifolds of Negative Curvature; 3.10 The Main Theorem for Surfaces of Genus 0; References; Index. | |
505 | 0 | |a Chapter 1: Foundations; 1.0 Review of Differential Calculus and Topology; 1.1 Differentiable Manifolds; 1.2 Tensor Bundles; 1.3 Immersions and Submersions; 1.4 Vector Fields and Tensor Fields; 1.5 Covariant Derivation; 1.6 The Exponential Mapping; 1.7 Lie Groups; 1.8 Riemannian Manifolds; 1.9 Geodesics and Convex Neighborhoods; 1.10 Isometric Immersions; 1.11 Riemannian Curvature; 1.12 Jacobi Fields; Chapter 2: Curvature and Topology; 2.1 Completeness and Cut Locus; 2.1 Appendix -- Orientation; 2.2 Symmetric Spaces; 2.3 The Hilbert Manifold of H1-curves. | |
520 | |a Riemannian Geometry (Degruyter Studies in Mathematics). | ||
650 | 0 | |a Geometry, Riemannian. |0 http://id.loc.gov/authorities/subjects/sh85054159 | |
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 6 | |a Géométrie de Riemann. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 7 | |a MATHEMATICS |x Geometry |x Analytic. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Geometry, Riemannian |2 fast | |
758 | |i has work: |a Riemannian geometry (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFYKpyCmhBrP6CVKgRb3HC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Klingenberg, Wilhelm, 1924-2010. |t Riemannian geometry. |b 2nd rev. ed. |d Berlin ; New York : W. de Gruyter, 1995 |w (DLC) 95002589 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 1. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=557833 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=557833 |3 Volltext | |
938 | |a Askews and Holts Library Services |b ASKH |n AH25319663 | ||
938 | |a ebrary |b EBRY |n ebr10597530 | ||
938 | |a EBSCOhost |b EBSC |n 557833 | ||
938 | |a YBP Library Services |b YANK |n 9644561 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn811407188 |
---|---|
_version_ | 1813903587783213056 |
adam_text | |
any_adam_object | |
author | Klingenberg, Wilhelm, 1924-2010 |
author_GND | http://id.loc.gov/authorities/names/n82072830 |
author_facet | Klingenberg, Wilhelm, 1924-2010 |
author_role | |
author_sort | Klingenberg, Wilhelm, 1924-2010 |
author_variant | w k wk |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 .K544 1995eb |
callnumber-search | QA649 .K544 1995eb |
callnumber-sort | QA 3649 K544 41995EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 2.4 The Loop Space and the Space of Closed Curves2.5 The Second Order Neighborhood of a Critical Point; 2.5 Appendix -- The S1- and the Z2-action on AM; 2.6 Index and Curvature; 2.6 Appendix -- The Injectivity Radius for 1/4-pinched Manifolds; 2.7 Comparison Theorems for Triangles; 2.8 The Sphere Theorem; 2.9 Non-compact Manifolds of Positive Curvature; Chapter 3: Structure of the Geodesic Flow; 3.1 Hamiltonian Systems; 3.2 Properties of the Geodesic Flow; 3.3 Stable and Unstable Motions; 3.4 Geodesics on Surfaces; 3.5 Geodesics on the Ellipsoid; 3.6 Closed Geodesies on Spheres. 3.7 The Theorem of the Three Closed Geodesics3.8 Manifolds of Non-Positive Curvature; 3.9 The Geodesic Flow on Manifolds of Negative Curvature; 3.10 The Main Theorem for Surfaces of Genus 0; References; Index. Chapter 1: Foundations; 1.0 Review of Differential Calculus and Topology; 1.1 Differentiable Manifolds; 1.2 Tensor Bundles; 1.3 Immersions and Submersions; 1.4 Vector Fields and Tensor Fields; 1.5 Covariant Derivation; 1.6 The Exponential Mapping; 1.7 Lie Groups; 1.8 Riemannian Manifolds; 1.9 Geodesics and Convex Neighborhoods; 1.10 Isometric Immersions; 1.11 Riemannian Curvature; 1.12 Jacobi Fields; Chapter 2: Curvature and Topology; 2.1 Completeness and Cut Locus; 2.1 Appendix -- Orientation; 2.2 Symmetric Spaces; 2.3 The Hilbert Manifold of H1-curves. |
ctrlnum | (OCoLC)811407188 |
dewey-full | 516.3/73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/73 |
dewey-search | 516.3/73 |
dewey-sort | 3516.3 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
edition | 2nd rev. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04790cam a2200625Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn811407188</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">950110s1995 gw a ob 001 0 eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="z"> 95002589 </subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">YDXCP</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AZK</subfield><subfield code="d">LOA</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">COCUF</subfield><subfield code="d">MOR</subfield><subfield code="d">PIFAG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">VT2</subfield><subfield code="d">INT</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">ICG</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKCRE</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961489692</subfield><subfield code="a">962644833</subfield><subfield code="a">974670851</subfield><subfield code="a">974741915</subfield><subfield code="a">1018008836</subfield><subfield code="a">1043591437</subfield><subfield code="a">1057912652</subfield><subfield code="a">1077239143</subfield><subfield code="a">1081231541</subfield><subfield code="a">1083035410</subfield><subfield code="a">1153538344</subfield><subfield code="a">1158246834</subfield><subfield code="a">1159691927</subfield><subfield code="a">1178862187</subfield><subfield code="a">1187186549</subfield><subfield code="a">1228563092</subfield><subfield code="a">1249258601</subfield><subfield code="a">1257357768</subfield><subfield code="a">1298476765</subfield><subfield code="a">1298518529</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110905120</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110905124</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110145936</subfield><subfield code="q">(acid-free paper)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110145939</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110905120</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)811407188</subfield><subfield code="z">(OCoLC)961489692</subfield><subfield code="z">(OCoLC)962644833</subfield><subfield code="z">(OCoLC)974670851</subfield><subfield code="z">(OCoLC)974741915</subfield><subfield code="z">(OCoLC)1018008836</subfield><subfield code="z">(OCoLC)1043591437</subfield><subfield code="z">(OCoLC)1057912652</subfield><subfield code="z">(OCoLC)1077239143</subfield><subfield code="z">(OCoLC)1081231541</subfield><subfield code="z">(OCoLC)1083035410</subfield><subfield code="z">(OCoLC)1153538344</subfield><subfield code="z">(OCoLC)1158246834</subfield><subfield code="z">(OCoLC)1159691927</subfield><subfield code="z">(OCoLC)1178862187</subfield><subfield code="z">(OCoLC)1187186549</subfield><subfield code="z">(OCoLC)1228563092</subfield><subfield code="z">(OCoLC)1249258601</subfield><subfield code="z">(OCoLC)1257357768</subfield><subfield code="z">(OCoLC)1298476765</subfield><subfield code="z">(OCoLC)1298518529</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA649</subfield><subfield code="b">.K544 1995eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">012020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">516.3/73</subfield><subfield code="2">20</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Klingenberg, Wilhelm,</subfield><subfield code="d">1924-2010.</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrKVp74DCJ7MgGmtXfyVC</subfield><subfield code="0">http://id.loc.gov/authorities/names/n82072830</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian geometry /</subfield><subfield code="c">Wilhelm P.A. Klingenberg.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd rev. ed.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">W. de Gruyter,</subfield><subfield code="c">1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 409 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">data file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">1</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 393-402) and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">2.4 The Loop Space and the Space of Closed Curves2.5 The Second Order Neighborhood of a Critical Point; 2.5 Appendix -- The S1- and the Z2-action on AM; 2.6 Index and Curvature; 2.6 Appendix -- The Injectivity Radius for 1/4-pinched Manifolds; 2.7 Comparison Theorems for Triangles; 2.8 The Sphere Theorem; 2.9 Non-compact Manifolds of Positive Curvature; Chapter 3: Structure of the Geodesic Flow; 3.1 Hamiltonian Systems; 3.2 Properties of the Geodesic Flow; 3.3 Stable and Unstable Motions; 3.4 Geodesics on Surfaces; 3.5 Geodesics on the Ellipsoid; 3.6 Closed Geodesies on Spheres.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">3.7 The Theorem of the Three Closed Geodesics3.8 Manifolds of Non-Positive Curvature; 3.9 The Geodesic Flow on Manifolds of Negative Curvature; 3.10 The Main Theorem for Surfaces of Genus 0; References; Index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Chapter 1: Foundations; 1.0 Review of Differential Calculus and Topology; 1.1 Differentiable Manifolds; 1.2 Tensor Bundles; 1.3 Immersions and Submersions; 1.4 Vector Fields and Tensor Fields; 1.5 Covariant Derivation; 1.6 The Exponential Mapping; 1.7 Lie Groups; 1.8 Riemannian Manifolds; 1.9 Geodesics and Convex Neighborhoods; 1.10 Isometric Immersions; 1.11 Riemannian Curvature; 1.12 Jacobi Fields; Chapter 2: Curvature and Topology; 2.1 Completeness and Cut Locus; 2.1 Appendix -- Orientation; 2.2 Symmetric Spaces; 2.3 The Hilbert Manifold of H1-curves.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Riemannian Geometry (Degruyter Studies in Mathematics).</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Riemannian.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054159</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie de Riemann.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Geometry</subfield><subfield code="x">Analytic.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Riemannian</subfield><subfield code="2">fast</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Riemannian geometry (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFYKpyCmhBrP6CVKgRb3HC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Klingenberg, Wilhelm, 1924-2010.</subfield><subfield code="t">Riemannian geometry.</subfield><subfield code="b">2nd rev. ed.</subfield><subfield code="d">Berlin ; New York : W. de Gruyter, 1995</subfield><subfield code="w">(DLC) 95002589</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">1.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=557833</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=557833</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25319663</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10597530</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">557833</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9644561</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn811407188 |
illustrated | Illustrated |
indexdate | 2024-10-25T16:21:03Z |
institution | BVB |
isbn | 9783110905120 3110905124 |
language | English |
oclc_num | 811407188 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (x, 409 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | W. de Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics ; |
spelling | Klingenberg, Wilhelm, 1924-2010. https://id.oclc.org/worldcat/entity/E39PBJrKVp74DCJ7MgGmtXfyVC http://id.loc.gov/authorities/names/n82072830 Riemannian geometry / Wilhelm P.A. Klingenberg. 2nd rev. ed. Berlin ; New York : W. de Gruyter, 1995. 1 online resource (x, 409 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier data file rda De Gruyter studies in mathematics ; 1 Includes bibliographical references (pages 393-402) and index. 2.4 The Loop Space and the Space of Closed Curves2.5 The Second Order Neighborhood of a Critical Point; 2.5 Appendix -- The S1- and the Z2-action on AM; 2.6 Index and Curvature; 2.6 Appendix -- The Injectivity Radius for 1/4-pinched Manifolds; 2.7 Comparison Theorems for Triangles; 2.8 The Sphere Theorem; 2.9 Non-compact Manifolds of Positive Curvature; Chapter 3: Structure of the Geodesic Flow; 3.1 Hamiltonian Systems; 3.2 Properties of the Geodesic Flow; 3.3 Stable and Unstable Motions; 3.4 Geodesics on Surfaces; 3.5 Geodesics on the Ellipsoid; 3.6 Closed Geodesies on Spheres. 3.7 The Theorem of the Three Closed Geodesics3.8 Manifolds of Non-Positive Curvature; 3.9 The Geodesic Flow on Manifolds of Negative Curvature; 3.10 The Main Theorem for Surfaces of Genus 0; References; Index. Chapter 1: Foundations; 1.0 Review of Differential Calculus and Topology; 1.1 Differentiable Manifolds; 1.2 Tensor Bundles; 1.3 Immersions and Submersions; 1.4 Vector Fields and Tensor Fields; 1.5 Covariant Derivation; 1.6 The Exponential Mapping; 1.7 Lie Groups; 1.8 Riemannian Manifolds; 1.9 Geodesics and Convex Neighborhoods; 1.10 Isometric Immersions; 1.11 Riemannian Curvature; 1.12 Jacobi Fields; Chapter 2: Curvature and Topology; 2.1 Completeness and Cut Locus; 2.1 Appendix -- Orientation; 2.2 Symmetric Spaces; 2.3 The Hilbert Manifold of H1-curves. Riemannian Geometry (Degruyter Studies in Mathematics). Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Géométrie de Riemann. Géométrie différentielle. MATHEMATICS Geometry Analytic. bisacsh Geometry, Differential fast Geometry, Riemannian fast has work: Riemannian geometry (Text) https://id.oclc.org/worldcat/entity/E39PCFYKpyCmhBrP6CVKgRb3HC https://id.oclc.org/worldcat/ontology/hasWork Print version: Klingenberg, Wilhelm, 1924-2010. Riemannian geometry. 2nd rev. ed. Berlin ; New York : W. de Gruyter, 1995 (DLC) 95002589 De Gruyter studies in mathematics ; 1. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=557833 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=557833 Volltext |
spellingShingle | Klingenberg, Wilhelm, 1924-2010 Riemannian geometry / De Gruyter studies in mathematics ; 2.4 The Loop Space and the Space of Closed Curves2.5 The Second Order Neighborhood of a Critical Point; 2.5 Appendix -- The S1- and the Z2-action on AM; 2.6 Index and Curvature; 2.6 Appendix -- The Injectivity Radius for 1/4-pinched Manifolds; 2.7 Comparison Theorems for Triangles; 2.8 The Sphere Theorem; 2.9 Non-compact Manifolds of Positive Curvature; Chapter 3: Structure of the Geodesic Flow; 3.1 Hamiltonian Systems; 3.2 Properties of the Geodesic Flow; 3.3 Stable and Unstable Motions; 3.4 Geodesics on Surfaces; 3.5 Geodesics on the Ellipsoid; 3.6 Closed Geodesies on Spheres. 3.7 The Theorem of the Three Closed Geodesics3.8 Manifolds of Non-Positive Curvature; 3.9 The Geodesic Flow on Manifolds of Negative Curvature; 3.10 The Main Theorem for Surfaces of Genus 0; References; Index. Chapter 1: Foundations; 1.0 Review of Differential Calculus and Topology; 1.1 Differentiable Manifolds; 1.2 Tensor Bundles; 1.3 Immersions and Submersions; 1.4 Vector Fields and Tensor Fields; 1.5 Covariant Derivation; 1.6 The Exponential Mapping; 1.7 Lie Groups; 1.8 Riemannian Manifolds; 1.9 Geodesics and Convex Neighborhoods; 1.10 Isometric Immersions; 1.11 Riemannian Curvature; 1.12 Jacobi Fields; Chapter 2: Curvature and Topology; 2.1 Completeness and Cut Locus; 2.1 Appendix -- Orientation; 2.2 Symmetric Spaces; 2.3 The Hilbert Manifold of H1-curves. Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Géométrie de Riemann. Géométrie différentielle. MATHEMATICS Geometry Analytic. bisacsh Geometry, Differential fast Geometry, Riemannian fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054159 http://id.loc.gov/authorities/subjects/sh85054146 |
title | Riemannian geometry / |
title_auth | Riemannian geometry / |
title_exact_search | Riemannian geometry / |
title_full | Riemannian geometry / Wilhelm P.A. Klingenberg. |
title_fullStr | Riemannian geometry / Wilhelm P.A. Klingenberg. |
title_full_unstemmed | Riemannian geometry / Wilhelm P.A. Klingenberg. |
title_short | Riemannian geometry / |
title_sort | riemannian geometry |
topic | Geometry, Riemannian. http://id.loc.gov/authorities/subjects/sh85054159 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Géométrie de Riemann. Géométrie différentielle. MATHEMATICS Geometry Analytic. bisacsh Geometry, Differential fast Geometry, Riemannian fast |
topic_facet | Geometry, Riemannian. Geometry, Differential. Géométrie de Riemann. Géométrie différentielle. MATHEMATICS Geometry Analytic. Geometry, Differential Geometry, Riemannian |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=557833 |
work_keys_str_mv | AT klingenbergwilhelm riemanniangeometry |