Methods of noncommutative analysis :: theory and applications /
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; New York :
Walter de Gruyter,
1995.
|
Schriftenreihe: | De Gruyter studies in mathematics ;
22. |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 online resource (x, 373 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9783110813548 3110813548 1306275261 9781306275262 |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn811372212 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 950817s1995 gw ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCO |d N$T |d OCLCF |d DEBBG |d IDEBK |d YDXCP |d EBLCP |d OCLCQ |d COO |d OCLCQ |d DEBSZ |d UIU |d AGLDB |d OCLCQ |d STF |d OCLCQ |d VLY |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
019 | |a 867075768 |a 922943486 |a 992817082 |a 1162038941 | ||
020 | |a 9783110813548 |q (electronic bk.) | ||
020 | |a 3110813548 |q (electronic bk.) | ||
020 | |a 1306275261 |q (ebk) | ||
020 | |a 9781306275262 |q (ebk) | ||
020 | |z 3110146320 | ||
020 | |z 9783110146325 | ||
024 | 7 | |a 10.1515/9783110813548 |2 doi | |
035 | |a (OCoLC)811372212 |z (OCoLC)867075768 |z (OCoLC)922943486 |z (OCoLC)992817082 |z (OCoLC)1162038941 | ||
037 | |a 558777 |b MIL | ||
050 | 4 | |a QC20.7.G44 |b N39 1995eb | |
072 | 7 | |a MAT |x 037000 |2 bisacsh | |
082 | 7 | |a 515/.72 |2 20 | |
049 | |a MAIN | ||
100 | 1 | |a Nazaĭkinskiĭ, V. E. | |
245 | 1 | 0 | |a Methods of noncommutative analysis : |b theory and applications / |c Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin. |
260 | |a Berlin ; |a New York : |b Walter de Gruyter, |c 1995. | ||
300 | |a 1 online resource (x, 373 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter studies in mathematics ; |v 22 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface -- I Elementary Notions of Noncommutative Analysis -- 1 Some Situations where Functions of Noncommuting Operators Arise -- 1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials -- 1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators -- 1.3 Differential and Integral Operators -- 1.4 Problems of Perturbation Theory -- 1.5 Multiplication Law in Lie Groups -- 1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator -- 1.7 T-Exponentials, Trotter Formulas, and Path Integrals | |
505 | 8 | |a 2 Functions of Noncommuting Operators: the Construction and Main Properties2.1 Motivations -- 2.2 The Definition and the Uniqueness Theorem -- 2.3 Basic Properties -- 2.4 Tempered Symbols and Generators of Tempered Groups -- 2.5 The Influence of the Symbol Classes on the Properties of Generators -- 2.6 Weyl Quantization -- 3 Noncommutative Differential Calculus -- 3.1 The Derivation Formula -- 3.2 The Daletskii-Krein Formula -- 3.3 Higher-Order Expansions -- 3.4 Permutation of Feynman Indices -- 3.5 The Composite Function Formula | |
505 | 8 | |a 4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula4.1 Statement of the Problem -- 4.2 The Commutation Operation -- 4.3 A Closed Formula for In (eBeA) -- 4.4 A Closed Formula for the Logarithm of a T-Exponential -- 5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques -- 5.1 Notation -- 5.2 Rules -- 5.3 Standard Techniques -- II Method of Ordered Representation -- 1 Ordered Representation: Definition and Main Property -- 1.1 Wick Normal Form -- 1.2 Ordered Representation and Theorem on Products -- 1.3 Reduction to Normal Form | |
505 | 8 | |a 2 Some Examples2.1 Functions of the Operators x and â€? ihÓ?/dÓ? -- 2.2 Perturbed Heisenberg Relations -- 2.3 Examples of Nonlinear Commutation Relations -- 2.4 Lie Commutation Relations -- 2.5 Graded Lie Algebras -- 3 Evaluation of the Ordered Representation Operators -- 3.1 Equations for the Ordered Representation Operators -- 3.2 How to Obtain the Solution -- 3.3 Semilinear Commutation Relations -- 4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem -- 4.1 Ordered Representation of Relation Systems and the Jacobi Condition | |
505 | 8 | |a 4.2 The Poincaré-Birkhoff-Witt Theorem4.3 Verification of the Jacobi Condition: Two Examples -- 5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation -- 6 Representations of Lie Groups and Functions of Their Generators -- 6.1 Conditions on the Representation -- 6.2 Hilbert Scales -- 6.3 Symbol Spaces -- 6.4 Symbol Classes: More Suitable for Asymptotic Problems -- III Noncommutative Analysis and Differential Equations -- 1 Preliminaries -- 1.1 Heaviside�s Operator Method for Differential Equations with Constant Coefficients | |
546 | |a English. | ||
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 0 | |a Noncommutative algebras. |0 http://id.loc.gov/authorities/subjects/sh85092241 | |
650 | 0 | |a Mathematical physics. |0 http://id.loc.gov/authorities/subjects/sh85082129 | |
650 | 6 | |a Géométrie différentielle. | |
650 | 6 | |a Algèbres non commutatives. | |
650 | 6 | |a Physique mathématique. | |
650 | 7 | |a MATHEMATICS |x Functional Analysis. |2 bisacsh | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Mathematical physics |2 fast | |
650 | 7 | |a Noncommutative algebras |2 fast | |
700 | 1 | |a Shatalov, V. E. |q (Viktor Evgenʹevich) |1 https://id.oclc.org/worldcat/entity/E39PCjBPtQc6r49wJFrDtFHmcX |0 http://id.loc.gov/authorities/names/n88189541 | |
700 | 1 | |a Sternin, B. I︠U︡. | |
758 | |i has work: |a Methods of Noncommutative Analysis (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFPM9mm8YcKVgtCqqPtk6q |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 9781306275262 |
830 | 0 | |a De Gruyter studies in mathematics ; |v 22. |0 http://id.loc.gov/authorities/names/n83742913 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL3040539 | ||
938 | |a ebrary |b EBRY |n ebr10588328 | ||
938 | |a EBSCOhost |b EBSC |n 560593 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n cis27169796 | ||
938 | |a YBP Library Services |b YANK |n 9591972 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn811372212 |
---|---|
_version_ | 1816882208268353536 |
adam_text | |
any_adam_object | |
author | Nazaĭkinskiĭ, V. E. |
author2 | Shatalov, V. E. (Viktor Evgenʹevich) Sternin, B. I︠U︡ |
author2_role | |
author2_variant | v e s ve ves b i s bi bis |
author_GND | http://id.loc.gov/authorities/names/n88189541 |
author_facet | Nazaĭkinskiĭ, V. E. Shatalov, V. E. (Viktor Evgenʹevich) Sternin, B. I︠U︡ |
author_role | |
author_sort | Nazaĭkinskiĭ, V. E. |
author_variant | v e n ve ven |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QC20 |
callnumber-raw | QC20.7.G44 N39 1995eb |
callnumber-search | QC20.7.G44 N39 1995eb |
callnumber-sort | QC 220.7 G44 N39 41995EB |
callnumber-subject | QC - Physics |
collection | ZDB-4-EBA |
contents | Preface -- I Elementary Notions of Noncommutative Analysis -- 1 Some Situations where Functions of Noncommuting Operators Arise -- 1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials -- 1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators -- 1.3 Differential and Integral Operators -- 1.4 Problems of Perturbation Theory -- 1.5 Multiplication Law in Lie Groups -- 1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator -- 1.7 T-Exponentials, Trotter Formulas, and Path Integrals 2 Functions of Noncommuting Operators: the Construction and Main Properties2.1 Motivations -- 2.2 The Definition and the Uniqueness Theorem -- 2.3 Basic Properties -- 2.4 Tempered Symbols and Generators of Tempered Groups -- 2.5 The Influence of the Symbol Classes on the Properties of Generators -- 2.6 Weyl Quantization -- 3 Noncommutative Differential Calculus -- 3.1 The Derivation Formula -- 3.2 The Daletskii-Krein Formula -- 3.3 Higher-Order Expansions -- 3.4 Permutation of Feynman Indices -- 3.5 The Composite Function Formula 4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula4.1 Statement of the Problem -- 4.2 The Commutation Operation -- 4.3 A Closed Formula for In (eBeA) -- 4.4 A Closed Formula for the Logarithm of a T-Exponential -- 5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques -- 5.1 Notation -- 5.2 Rules -- 5.3 Standard Techniques -- II Method of Ordered Representation -- 1 Ordered Representation: Definition and Main Property -- 1.1 Wick Normal Form -- 1.2 Ordered Representation and Theorem on Products -- 1.3 Reduction to Normal Form 2 Some Examples2.1 Functions of the Operators x and â€? ihÓ?/dÓ? -- 2.2 Perturbed Heisenberg Relations -- 2.3 Examples of Nonlinear Commutation Relations -- 2.4 Lie Commutation Relations -- 2.5 Graded Lie Algebras -- 3 Evaluation of the Ordered Representation Operators -- 3.1 Equations for the Ordered Representation Operators -- 3.2 How to Obtain the Solution -- 3.3 Semilinear Commutation Relations -- 4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem -- 4.1 Ordered Representation of Relation Systems and the Jacobi Condition 4.2 The Poincaré-Birkhoff-Witt Theorem4.3 Verification of the Jacobi Condition: Two Examples -- 5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation -- 6 Representations of Lie Groups and Functions of Their Generators -- 6.1 Conditions on the Representation -- 6.2 Hilbert Scales -- 6.3 Symbol Spaces -- 6.4 Symbol Classes: More Suitable for Asymptotic Problems -- III Noncommutative Analysis and Differential Equations -- 1 Preliminaries -- 1.1 Heavisideâ€?s Operator Method for Differential Equations with Constant Coefficients |
ctrlnum | (OCoLC)811372212 |
dewey-full | 515/.72 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.72 |
dewey-search | 515/.72 |
dewey-sort | 3515 272 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05895cam a2200721Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn811372212</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">950817s1995 gw ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">DEBBG</subfield><subfield code="d">IDEBK</subfield><subfield code="d">YDXCP</subfield><subfield code="d">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">UIU</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">STF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">VLY</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">867075768</subfield><subfield code="a">922943486</subfield><subfield code="a">992817082</subfield><subfield code="a">1162038941</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110813548</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110813548</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306275261</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306275262</subfield><subfield code="q">(ebk)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">3110146320</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783110146325</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110813548</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)811372212</subfield><subfield code="z">(OCoLC)867075768</subfield><subfield code="z">(OCoLC)922943486</subfield><subfield code="z">(OCoLC)992817082</subfield><subfield code="z">(OCoLC)1162038941</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">558777</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC20.7.G44</subfield><subfield code="b">N39 1995eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">037000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.72</subfield><subfield code="2">20</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nazaĭkinskiĭ, V. E.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methods of noncommutative analysis :</subfield><subfield code="b">theory and applications /</subfield><subfield code="c">Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Walter de Gruyter,</subfield><subfield code="c">1995.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (x, 373 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">22</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- I Elementary Notions of Noncommutative Analysis -- 1 Some Situations where Functions of Noncommuting Operators Arise -- 1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials -- 1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators -- 1.3 Differential and Integral Operators -- 1.4 Problems of Perturbation Theory -- 1.5 Multiplication Law in Lie Groups -- 1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator -- 1.7 T-Exponentials, Trotter Formulas, and Path Integrals</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 Functions of Noncommuting Operators: the Construction and Main Properties2.1 Motivations -- 2.2 The Definition and the Uniqueness Theorem -- 2.3 Basic Properties -- 2.4 Tempered Symbols and Generators of Tempered Groups -- 2.5 The Influence of the Symbol Classes on the Properties of Generators -- 2.6 Weyl Quantization -- 3 Noncommutative Differential Calculus -- 3.1 The Derivation Formula -- 3.2 The Daletskii-Krein Formula -- 3.3 Higher-Order Expansions -- 3.4 Permutation of Feynman Indices -- 3.5 The Composite Function Formula</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula4.1 Statement of the Problem -- 4.2 The Commutation Operation -- 4.3 A Closed Formula for In (eBeA) -- 4.4 A Closed Formula for the Logarithm of a T-Exponential -- 5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques -- 5.1 Notation -- 5.2 Rules -- 5.3 Standard Techniques -- II Method of Ordered Representation -- 1 Ordered Representation: Definition and Main Property -- 1.1 Wick Normal Form -- 1.2 Ordered Representation and Theorem on Products -- 1.3 Reduction to Normal Form</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2 Some Examples2.1 Functions of the Operators x and â€? ihÓ?/dÓ? -- 2.2 Perturbed Heisenberg Relations -- 2.3 Examples of Nonlinear Commutation Relations -- 2.4 Lie Commutation Relations -- 2.5 Graded Lie Algebras -- 3 Evaluation of the Ordered Representation Operators -- 3.1 Equations for the Ordered Representation Operators -- 3.2 How to Obtain the Solution -- 3.3 Semilinear Commutation Relations -- 4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem -- 4.1 Ordered Representation of Relation Systems and the Jacobi Condition</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2 The Poincaré-Birkhoff-Witt Theorem4.3 Verification of the Jacobi Condition: Two Examples -- 5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation -- 6 Representations of Lie Groups and Functions of Their Generators -- 6.1 Conditions on the Representation -- 6.2 Hilbert Scales -- 6.3 Symbol Spaces -- 6.4 Symbol Classes: More Suitable for Asymptotic Problems -- III Noncommutative Analysis and Differential Equations -- 1 Preliminaries -- 1.1 Heavisideâ€?s Operator Method for Differential Equations with Constant Coefficients</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Noncommutative algebras.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85092241</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Mathematical physics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85082129</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Algèbres non commutatives.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Physique mathématique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Functional Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical physics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Noncommutative algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shatalov, V. E.</subfield><subfield code="q">(Viktor Evgenʹevich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjBPtQc6r49wJFrDtFHmcX</subfield><subfield code="0">http://id.loc.gov/authorities/names/n88189541</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sternin, B. I︠U︡.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Methods of Noncommutative Analysis (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFPM9mm8YcKVgtCqqPtk6q</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">9781306275262</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter studies in mathematics ;</subfield><subfield code="v">22.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n83742913</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL3040539</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10588328</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">560593</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">cis27169796</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9591972</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn811372212 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:24:57Z |
institution | BVB |
isbn | 9783110813548 3110813548 1306275261 9781306275262 |
language | English |
oclc_num | 811372212 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (x, 373 pages) |
psigel | ZDB-4-EBA |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Walter de Gruyter, |
record_format | marc |
series | De Gruyter studies in mathematics ; |
series2 | De Gruyter studies in mathematics ; |
spelling | Nazaĭkinskiĭ, V. E. Methods of noncommutative analysis : theory and applications / Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin. Berlin ; New York : Walter de Gruyter, 1995. 1 online resource (x, 373 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier De Gruyter studies in mathematics ; 22 Includes bibliographical references and index. Preface -- I Elementary Notions of Noncommutative Analysis -- 1 Some Situations where Functions of Noncommuting Operators Arise -- 1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials -- 1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators -- 1.3 Differential and Integral Operators -- 1.4 Problems of Perturbation Theory -- 1.5 Multiplication Law in Lie Groups -- 1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator -- 1.7 T-Exponentials, Trotter Formulas, and Path Integrals 2 Functions of Noncommuting Operators: the Construction and Main Properties2.1 Motivations -- 2.2 The Definition and the Uniqueness Theorem -- 2.3 Basic Properties -- 2.4 Tempered Symbols and Generators of Tempered Groups -- 2.5 The Influence of the Symbol Classes on the Properties of Generators -- 2.6 Weyl Quantization -- 3 Noncommutative Differential Calculus -- 3.1 The Derivation Formula -- 3.2 The Daletskii-Krein Formula -- 3.3 Higher-Order Expansions -- 3.4 Permutation of Feynman Indices -- 3.5 The Composite Function Formula 4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula4.1 Statement of the Problem -- 4.2 The Commutation Operation -- 4.3 A Closed Formula for In (eBeA) -- 4.4 A Closed Formula for the Logarithm of a T-Exponential -- 5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques -- 5.1 Notation -- 5.2 Rules -- 5.3 Standard Techniques -- II Method of Ordered Representation -- 1 Ordered Representation: Definition and Main Property -- 1.1 Wick Normal Form -- 1.2 Ordered Representation and Theorem on Products -- 1.3 Reduction to Normal Form 2 Some Examples2.1 Functions of the Operators x and â€? ihÓ?/dÓ? -- 2.2 Perturbed Heisenberg Relations -- 2.3 Examples of Nonlinear Commutation Relations -- 2.4 Lie Commutation Relations -- 2.5 Graded Lie Algebras -- 3 Evaluation of the Ordered Representation Operators -- 3.1 Equations for the Ordered Representation Operators -- 3.2 How to Obtain the Solution -- 3.3 Semilinear Commutation Relations -- 4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem -- 4.1 Ordered Representation of Relation Systems and the Jacobi Condition 4.2 The Poincaré-Birkhoff-Witt Theorem4.3 Verification of the Jacobi Condition: Two Examples -- 5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation -- 6 Representations of Lie Groups and Functions of Their Generators -- 6.1 Conditions on the Representation -- 6.2 Hilbert Scales -- 6.3 Symbol Spaces -- 6.4 Symbol Classes: More Suitable for Asymptotic Problems -- III Noncommutative Analysis and Differential Equations -- 1 Preliminaries -- 1.1 Heavisideâ€?s Operator Method for Differential Equations with Constant Coefficients English. Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Noncommutative algebras. http://id.loc.gov/authorities/subjects/sh85092241 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Géométrie différentielle. Algèbres non commutatives. Physique mathématique. MATHEMATICS Functional Analysis. bisacsh Geometry, Differential fast Mathematical physics fast Noncommutative algebras fast Shatalov, V. E. (Viktor Evgenʹevich) https://id.oclc.org/worldcat/entity/E39PCjBPtQc6r49wJFrDtFHmcX http://id.loc.gov/authorities/names/n88189541 Sternin, B. I︠U︡. has work: Methods of Noncommutative Analysis (Text) https://id.oclc.org/worldcat/entity/E39PCFPM9mm8YcKVgtCqqPtk6q https://id.oclc.org/worldcat/ontology/hasWork Print version: 9781306275262 De Gruyter studies in mathematics ; 22. http://id.loc.gov/authorities/names/n83742913 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593 Volltext |
spellingShingle | Nazaĭkinskiĭ, V. E. Methods of noncommutative analysis : theory and applications / De Gruyter studies in mathematics ; Preface -- I Elementary Notions of Noncommutative Analysis -- 1 Some Situations where Functions of Noncommuting Operators Arise -- 1.1 Nonautonomous Linear Differential Equations of First Order. T-Exponentials -- 1.2 Operators of Quantum Mechanics. Creation and Annihilation Operators -- 1.3 Differential and Integral Operators -- 1.4 Problems of Perturbation Theory -- 1.5 Multiplication Law in Lie Groups -- 1.6 Eigenfunctions and Eigenvalues of the Quantum Oscillator -- 1.7 T-Exponentials, Trotter Formulas, and Path Integrals 2 Functions of Noncommuting Operators: the Construction and Main Properties2.1 Motivations -- 2.2 The Definition and the Uniqueness Theorem -- 2.3 Basic Properties -- 2.4 Tempered Symbols and Generators of Tempered Groups -- 2.5 The Influence of the Symbol Classes on the Properties of Generators -- 2.6 Weyl Quantization -- 3 Noncommutative Differential Calculus -- 3.1 The Derivation Formula -- 3.2 The Daletskii-Krein Formula -- 3.3 Higher-Order Expansions -- 3.4 Permutation of Feynman Indices -- 3.5 The Composite Function Formula 4 The Campbell-Hausdorff Theorem and Dynkinâ€?s Formula4.1 Statement of the Problem -- 4.2 The Commutation Operation -- 4.3 A Closed Formula for In (eBeA) -- 4.4 A Closed Formula for the Logarithm of a T-Exponential -- 5 Summary: Rules of â€Operator Arithmeticâ€? and Some Standard Techniques -- 5.1 Notation -- 5.2 Rules -- 5.3 Standard Techniques -- II Method of Ordered Representation -- 1 Ordered Representation: Definition and Main Property -- 1.1 Wick Normal Form -- 1.2 Ordered Representation and Theorem on Products -- 1.3 Reduction to Normal Form 2 Some Examples2.1 Functions of the Operators x and â€? ihÓ?/dÓ? -- 2.2 Perturbed Heisenberg Relations -- 2.3 Examples of Nonlinear Commutation Relations -- 2.4 Lie Commutation Relations -- 2.5 Graded Lie Algebras -- 3 Evaluation of the Ordered Representation Operators -- 3.1 Equations for the Ordered Representation Operators -- 3.2 How to Obtain the Solution -- 3.3 Semilinear Commutation Relations -- 4 The Jacobi Condition and Poincaré-Birkhoff-Witt Theorem -- 4.1 Ordered Representation of Relation Systems and the Jacobi Condition 4.2 The Poincaré-Birkhoff-Witt Theorem4.3 Verification of the Jacobi Condition: Two Examples -- 5 The Ordered Representations, Jacobi Condition, and the Yang-Baxter Equation -- 6 Representations of Lie Groups and Functions of Their Generators -- 6.1 Conditions on the Representation -- 6.2 Hilbert Scales -- 6.3 Symbol Spaces -- 6.4 Symbol Classes: More Suitable for Asymptotic Problems -- III Noncommutative Analysis and Differential Equations -- 1 Preliminaries -- 1.1 Heavisideâ€?s Operator Method for Differential Equations with Constant Coefficients Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Noncommutative algebras. http://id.loc.gov/authorities/subjects/sh85092241 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Géométrie différentielle. Algèbres non commutatives. Physique mathématique. MATHEMATICS Functional Analysis. bisacsh Geometry, Differential fast Mathematical physics fast Noncommutative algebras fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85054146 http://id.loc.gov/authorities/subjects/sh85092241 http://id.loc.gov/authorities/subjects/sh85082129 |
title | Methods of noncommutative analysis : theory and applications / |
title_auth | Methods of noncommutative analysis : theory and applications / |
title_exact_search | Methods of noncommutative analysis : theory and applications / |
title_full | Methods of noncommutative analysis : theory and applications / Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin. |
title_fullStr | Methods of noncommutative analysis : theory and applications / Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin. |
title_full_unstemmed | Methods of noncommutative analysis : theory and applications / Vladimir E. Nazaikinskii, Victor E. Shatalov, Boris Yu. Sternin. |
title_short | Methods of noncommutative analysis : |
title_sort | methods of noncommutative analysis theory and applications |
title_sub | theory and applications / |
topic | Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Noncommutative algebras. http://id.loc.gov/authorities/subjects/sh85092241 Mathematical physics. http://id.loc.gov/authorities/subjects/sh85082129 Géométrie différentielle. Algèbres non commutatives. Physique mathématique. MATHEMATICS Functional Analysis. bisacsh Geometry, Differential fast Mathematical physics fast Noncommutative algebras fast |
topic_facet | Geometry, Differential. Noncommutative algebras. Mathematical physics. Géométrie différentielle. Algèbres non commutatives. Physique mathématique. MATHEMATICS Functional Analysis. Geometry, Differential Mathematical physics Noncommutative algebras |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=560593 |
work_keys_str_mv | AT nazaikinskiive methodsofnoncommutativeanalysistheoryandapplications AT shatalovve methodsofnoncommutativeanalysistheoryandapplications AT sterninbiu methodsofnoncommutativeanalysistheoryandapplications |