Chemical sensors :: simulation and modeling. Volume 2, Conductometric-type sensors /
This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, tec...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :
Momentum Press,
2012.
|
Schriftenreihe: | Sensor technology series.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. |
Beschreibung: | Title from PDF title page (viewed Sept. 17, 2012). |
Beschreibung: | 1 online resource (xxiii, 486 pages) : illustrations, digital file. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781606503140 1606503146 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn810787175 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m eo d | ||
007 | cr cn||||m|||a | ||
008 | 120923s2012 nyua foab 001 0 eng d | ||
040 | |a CaBNvSL |b eng |e pn |c J2I |d J2I |d NYMPP |d E7B |d OCLCQ |d N$T |d YDXCP |d UMI |d COO |d DEBBG |d DEBSZ |d EBLCP |d LGG |d OCLCQ |d OCLCF |d OCLCQ |d UPM |d STF |d VTS |d M8D |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d OCLCQ | ||
019 | |a 854968538 |a 864676740 | ||
020 | |a 9781606503140 |q (electronic bk.) | ||
020 | |a 1606503146 |q (electronic bk.) | ||
020 | |z 9781606503126 |q (print) | ||
020 | |z 160650312X |q (print) | ||
024 | 7 | |a 10.5643/9781606503140 |2 doi | |
035 | |a (OCoLC)810787175 |z (OCoLC)854968538 |z (OCoLC)864676740 | ||
037 | |a CL0500000341 |b Safari Books Online | ||
050 | 4 | |a TP159.C46 |b C447 2012 | |
072 | 7 | |a TEC |x 064000 |2 bisacsh | |
082 | 7 | |a 681.2 |2 22 | |
049 | |a MAIN | ||
245 | 0 | 0 | |a Chemical sensors : |b simulation and modeling. |n Volume 2, |p Conductometric-type sensors / |c edited by Ghenadii Korotcenkov. |
246 | 3 | 0 | |a Simulation and modeling |
246 | 3 | 0 | |a Conductometric-type sensors |
260 | |a [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : |b Momentum Press, |c 2012. | ||
300 | |a 1 online resource (xxiii, 486 pages) : |b illustrations, digital file. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Sensor technology series | |
500 | |a Title from PDF title page (viewed Sept. 17, 2012). | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Preface -- About the editor -- Contributors. | |
505 | 8 | |a 1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References. | |
505 | 8 | |a 2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References. | |
505 | 8 | |a 3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References. | |
505 | 8 | |a 4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort [and others] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References. | |
505 | 8 | |a 5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References. | |
505 | 8 | |a 6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References. | |
505 | 8 | |a 7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg [and others] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References. | |
505 | 8 | |a 8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References. | |
505 | 8 | |a 9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray [and others] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References. | |
505 | 8 | |a 10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References. | |
505 | 8 | |a 11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei [and others] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References. | |
505 | 8 | |a 12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References. | |
505 | 8 | |a Index. | |
520 | 3 | |a This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. | |
650 | 0 | |a Chemical detectors. |0 http://id.loc.gov/authorities/subjects/sh85022895 | |
650 | 0 | |a Nanostructured materials. |0 http://id.loc.gov/authorities/subjects/sh93000864 | |
650 | 2 | |a Nanostructures |0 https://id.nlm.nih.gov/mesh/D049329 | |
650 | 6 | |a Détecteurs de produits chimiques. | |
650 | 6 | |a Nanomatériaux. | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Sensors. |2 bisacsh | |
650 | 7 | |a Chemical detectors |2 fast | |
650 | 7 | |a Nanostructured materials |2 fast | |
653 | |a chemical sensors | ||
653 | |a conductometric sensors | ||
653 | |a gas sensing | ||
653 | |a resistive chemical sensors | ||
653 | |a nanosensors | ||
653 | |a metal oxide sensors | ||
653 | |a spinel ferrite gas sensors | ||
653 | |a semiconductor gas sensors | ||
653 | |a mixed metal oxide nanocomposites | ||
653 | |a tin dioxide-based gas sensors | ||
653 | |a transition metal-doped single-walled carbon nanotubes | ||
653 | |a aluminum-doped graphene | ||
653 | |a nanowire-based field-effect biosensors | ||
700 | 1 | |a Korotchenkov, G. S. |q (Gennadiĭ Sergeevich) |1 https://id.oclc.org/worldcat/entity/E39PCjyJrHhgWV6HgFJKk4YRqP |0 http://id.loc.gov/authorities/names/n85154129 | |
758 | |i has work: |a Chemical sensors Volume 2 Conductometric-type sensors (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGjqHymcD4rxWFkgRyTbVC |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |z 160650312X |z 9781606503126 |
830 | 0 | |a Sensor technology series. |0 http://id.loc.gov/authorities/names/no2010138455 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=501150 |3 Volltext |
938 | |a ProQuest Ebook Central |b EBLB |n EBL954636 | ||
938 | |a ebrary |b EBRY |n ebr10605119 | ||
938 | |a EBSCOhost |b EBSC |n 501150 | ||
938 | |a Momentum Press |b NYMP |n 9781606503140 | ||
938 | |a YBP Library Services |b YANK |n 9733652 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn810787175 |
---|---|
_version_ | 1816882207345606657 |
adam_text | |
any_adam_object | |
author2 | Korotchenkov, G. S. (Gennadiĭ Sergeevich) |
author2_role | |
author2_variant | g s k gs gsk |
author_GND | http://id.loc.gov/authorities/names/n85154129 |
author_facet | Korotchenkov, G. S. (Gennadiĭ Sergeevich) |
author_sort | Korotchenkov, G. S. |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TP159 |
callnumber-raw | TP159.C46 C447 2012 |
callnumber-search | TP159.C46 C447 2012 |
callnumber-sort | TP 3159 C46 C447 42012 |
callnumber-subject | TP - Chemical Technology |
collection | ZDB-4-EBA |
contents | Preface -- About the editor -- Contributors. 1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References. 2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References. 3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References. 4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort [and others] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References. 5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References. 6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References. 7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg [and others] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References. 8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References. 9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray [and others] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References. 10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References. 11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei [and others] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References. 12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References. Index. |
ctrlnum | (OCoLC)810787175 |
dewey-full | 681.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681.2 |
dewey-search | 681.2 |
dewey-sort | 3681.2 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08657cam a2200949 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn810787175</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m eo d </controlfield><controlfield tag="007">cr cn||||m|||a</controlfield><controlfield tag="008">120923s2012 nyua foab 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">CaBNvSL</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">J2I</subfield><subfield code="d">J2I</subfield><subfield code="d">NYMPP</subfield><subfield code="d">E7B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">UMI</subfield><subfield code="d">COO</subfield><subfield code="d">DEBBG</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">EBLCP</subfield><subfield code="d">LGG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UPM</subfield><subfield code="d">STF</subfield><subfield code="d">VTS</subfield><subfield code="d">M8D</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">854968538</subfield><subfield code="a">864676740</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606503140</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606503146</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781606503126</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">160650312X</subfield><subfield code="q">(print)</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.5643/9781606503140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)810787175</subfield><subfield code="z">(OCoLC)854968538</subfield><subfield code="z">(OCoLC)864676740</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">CL0500000341</subfield><subfield code="b">Safari Books Online</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TP159.C46</subfield><subfield code="b">C447 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">064000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">681.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Chemical sensors :</subfield><subfield code="b">simulation and modeling.</subfield><subfield code="n">Volume 2,</subfield><subfield code="p">Conductometric-type sensors /</subfield><subfield code="c">edited by Ghenadii Korotcenkov.</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Simulation and modeling</subfield></datafield><datafield tag="246" ind1="3" ind2="0"><subfield code="a">Conductometric-type sensors</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">[New York, N.Y.] (222 East 46th Street, New York, NY 10017) :</subfield><subfield code="b">Momentum Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xxiii, 486 pages) :</subfield><subfield code="b">illustrations, digital file.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Sensor technology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from PDF title page (viewed Sept. 17, 2012).</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Preface -- About the editor -- Contributors.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort [and others] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg [and others] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray [and others] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei [and others] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Index.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Chemical detectors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85022895</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nanostructured materials.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh93000864</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Nanostructures</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D049329</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Détecteurs de produits chimiques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Nanomatériaux.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Sensors.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chemical detectors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nanostructured materials</subfield><subfield code="2">fast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">chemical sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">conductometric sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">gas sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">resistive chemical sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanosensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metal oxide sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spinel ferrite gas sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">semiconductor gas sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mixed metal oxide nanocomposites</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tin dioxide-based gas sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transition metal-doped single-walled carbon nanotubes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">aluminum-doped graphene</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanowire-based field-effect biosensors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Korotchenkov, G. S.</subfield><subfield code="q">(Gennadiĭ Sergeevich)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjyJrHhgWV6HgFJKk4YRqP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n85154129</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Chemical sensors Volume 2 Conductometric-type sensors (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGjqHymcD4rxWFkgRyTbVC</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="z">160650312X</subfield><subfield code="z">9781606503126</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Sensor technology series.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2010138455</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=501150</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest Ebook Central</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL954636</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10605119</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">501150</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Momentum Press</subfield><subfield code="b">NYMP</subfield><subfield code="n">9781606503140</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9733652</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn810787175 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:24:57Z |
institution | BVB |
isbn | 9781606503140 1606503146 |
language | English |
oclc_num | 810787175 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xxiii, 486 pages) : illustrations, digital file. |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Momentum Press, |
record_format | marc |
series | Sensor technology series. |
series2 | Sensor technology series |
spelling | Chemical sensors : simulation and modeling. Volume 2, Conductometric-type sensors / edited by Ghenadii Korotcenkov. Simulation and modeling Conductometric-type sensors [New York, N.Y.] (222 East 46th Street, New York, NY 10017) : Momentum Press, 2012. 1 online resource (xxiii, 486 pages) : illustrations, digital file. text txt rdacontent computer c rdamedia online resource cr rdacarrier Sensor technology series Title from PDF title page (viewed Sept. 17, 2012). Includes bibliographical references and index. Preface -- About the editor -- Contributors. 1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References. 2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References. 3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References. 4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort [and others] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References. 5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References. 6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References. 7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg [and others] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References. 8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References. 9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray [and others] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References. 10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References. 11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei [and others] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References. 12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References. Index. This series, Chemical Sensors: Simulation and Modeling, is the perfect complement to Momentum Press's six-volume reference series, Chemical Sensors: Fundamentals of Sensing Materials and Chemical Sensors: Comprehensive Sensor Technologies, which present detailed information about materials, technologies, fabrication, and applications of various devices for chemical sensing. Chemical sensors are integral to the automation of myriad industrial processes and everyday monitoring of such activities as public safety, engine performance, medical therapeutics, and many more. Chemical detectors. http://id.loc.gov/authorities/subjects/sh85022895 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Nanostructures https://id.nlm.nih.gov/mesh/D049329 Détecteurs de produits chimiques. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. bisacsh Chemical detectors fast Nanostructured materials fast chemical sensors conductometric sensors gas sensing resistive chemical sensors nanosensors metal oxide sensors spinel ferrite gas sensors semiconductor gas sensors mixed metal oxide nanocomposites tin dioxide-based gas sensors transition metal-doped single-walled carbon nanotubes aluminum-doped graphene nanowire-based field-effect biosensors Korotchenkov, G. S. (Gennadiĭ Sergeevich) https://id.oclc.org/worldcat/entity/E39PCjyJrHhgWV6HgFJKk4YRqP http://id.loc.gov/authorities/names/n85154129 has work: Chemical sensors Volume 2 Conductometric-type sensors (Text) https://id.oclc.org/worldcat/entity/E39PCGjqHymcD4rxWFkgRyTbVC https://id.oclc.org/worldcat/ontology/hasWork Print version: 160650312X 9781606503126 Sensor technology series. http://id.loc.gov/authorities/names/no2010138455 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=501150 Volltext |
spellingShingle | Chemical sensors : simulation and modeling. Sensor technology series. Preface -- About the editor -- Contributors. 1. Numerical simulation of electrical responses to gases in advanced structures / A. Šetkus -- Introduction -- Analytic and numeric modeling -- Resistive sensors -- Concluding comments -- References. 2. Co-adsorption processes and quantum mechanical modeling of gas-sensing effects / J.-J. Velasco-Vélez -- Introduction -- Solid-gas interaction -- Co-adsorption -- Discussion -- Summary -- Nomenclature -- Dedication -- Acknowledgment -- References. 3. Nanosensors: a platform to model the sensing mechanisms in metal oxides / F. Hernandez-Ramirez, J.D. Prades, A. Cirera -- Introduction -- Toward a better description of gas-sensing mechanisms in metal oxides: oxygen diffusion in tin dioxide nanowires -- Toward a systematic understanding of photo-activated gas sensors -- Conclusions -- Acknowledgments -- References. 4. Surface state models for conductance response of metal oxide gas sensors during thermal transients / A. Fort [and others] -- Introduction -- Surface-state-based models of resistive chemical sensors -- Building a chemical-physical sensor model: from the chemistry to the resistance variations -- Surface state-based models for chemical resistive sensors: different assumptions and points of view -- Developing a treatable gray model from the physical-chemical model -- Conclusions -- Nomenclature -- References. 5. Conductance transient analyses of metal oxide gas sensors on the example of spinel ferrite gas sensors / K. Mukherjee, S.B. Majumder -- Introduction -- Salient features of gas-solid interaction during gas sensing -- Experimental -- Modeling the conductance transients during response and recovery -- Characteristic features observed in resistance transients -- Summary and conclusions -- Appendix -- Nomenclature -- Acknowledgment -- References. 6. Model of thermal transient response of semiconductor gas sensors / Akira Fujimoto -- Introduction -- Improvement in selectivity of the semiconductor gas sensor using transient response -- Model of thermal transient response of semiconductor gas sensors -- Modeling of gas sensor processes -- Calculation methods -- Calculated transient responses of gas sensors -- Application of the model of transient response -- Conclusions -- References. 7. Experimental investigation and modeling of gas-sensing effect in mixed metal oxide nanocomposites / L.I. Trakhtenberg [and others] -- Introduction -- Types of mixed metal oxides -- Synthesis of metal oxide nanocomposites -- Charge transfer processes and conductivity -- Conductivity mechanism -- Sensor properties -- Mechanism of sensor effect -- Modeling of the sensory effect for reduced gases -- Conclusions -- Acknowledgment -- References. 8. The influence of water vapor on the gas-sensing phenomenon of tin dioxide-based gas sensors / R.G. Pavelko -- Introduction -- Direct water effects on tin dioxide-based gas sensors -- Indirect water effects on tin dioxide-based gas sensors -- Phenomenological model -- Conclusions -- Acknowledgments -- References. 9. Computational design of chemical nanosensors: transition metal-doped single-walled carbon nanotubes / Duncan J. Mowbray [and others] -- Introduction -- TM-doped SWNTs as nanosensors -- Density functional theory -- Kinetic modeling -- Nonequilibrium Green's function methodology -- Sensing property -- Conclusions -- Acknowledgments -- References. 10. AL-doped graphene for ultrasensitive gas detection / Z.M. Ao, Q. Jiang, S. Li -- Emerging graphene-based gas sensors -- Aluminum-doped graphene for CO detection -- Aluminum-doped graphene for formaldehyde detection -- Aluminum-doped graphene for detection of HF molecules -- Conclusion and future challenges -- Acknowledgments -- References. 11. Physics-based modeling of SnO2 gas sensors with field-effect transistor structure / P. Andrei [and others] -- Introduction -- Physics-based modeling of the nanobelts -- Model calibration -- Analytical model for nanobelt sensors -- Conclusion -- Appendix: Fabrication and experimental data -- References. 12. Modeling and simulation of nanowire-based field-effect biosensors / S. Baumgartner, M. Vasicek, C. Heitzinger -- Introduction -- Homogenization -- The biofunctionalized boundary layer -- The current through the nanowire transducer -- Summary -- Acknowledgment -- References. Index. Chemical detectors. http://id.loc.gov/authorities/subjects/sh85022895 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Nanostructures https://id.nlm.nih.gov/mesh/D049329 Détecteurs de produits chimiques. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. bisacsh Chemical detectors fast Nanostructured materials fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85022895 http://id.loc.gov/authorities/subjects/sh93000864 https://id.nlm.nih.gov/mesh/D049329 |
title | Chemical sensors : simulation and modeling. |
title_alt | Simulation and modeling Conductometric-type sensors |
title_auth | Chemical sensors : simulation and modeling. |
title_exact_search | Chemical sensors : simulation and modeling. |
title_full | Chemical sensors : simulation and modeling. Volume 2, Conductometric-type sensors / edited by Ghenadii Korotcenkov. |
title_fullStr | Chemical sensors : simulation and modeling. Volume 2, Conductometric-type sensors / edited by Ghenadii Korotcenkov. |
title_full_unstemmed | Chemical sensors : simulation and modeling. Volume 2, Conductometric-type sensors / edited by Ghenadii Korotcenkov. |
title_short | Chemical sensors : |
title_sort | chemical sensors simulation and modeling conductometric type sensors |
title_sub | simulation and modeling. |
topic | Chemical detectors. http://id.loc.gov/authorities/subjects/sh85022895 Nanostructured materials. http://id.loc.gov/authorities/subjects/sh93000864 Nanostructures https://id.nlm.nih.gov/mesh/D049329 Détecteurs de produits chimiques. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. bisacsh Chemical detectors fast Nanostructured materials fast |
topic_facet | Chemical detectors. Nanostructured materials. Nanostructures Détecteurs de produits chimiques. Nanomatériaux. TECHNOLOGY & ENGINEERING Sensors. Chemical detectors Nanostructured materials |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=501150 |
work_keys_str_mv | AT korotchenkovgs chemicalsensorssimulationandmodelingvolume2 AT korotchenkovgs simulationandmodeling AT korotchenkovgs conductometrictypesensors |