Semiconductor Spintronics.:
Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field....
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore :
World Scientific,
2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern found. |
Beschreibung: | 4.5 Production and Transport of Spin-polarized Current. |
Beschreibung: | 1 online resource (550 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9789814327916 9814327913 1281603546 9781281603548 |
Internformat
MARC
LEADER | 00000cam a2200000Mu 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn804661900 | ||
003 | OCoLC | ||
005 | 20240705115654.0 | ||
006 | m o d | ||
007 | cr un||||||||| | ||
008 | 120806s2012 si ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d OCLCQ |d FDA |d OCLCO |d IDEBK |d OCLCQ |d CDX |d OCLCO |d YDXCP |d I9W |d N$T |d OCLCF |d OCLCQ |d OCLCO |d OCLCQ |d AGLDB |d OCLCQ |d NJR |d OCLCQ |d UUM |d VNS |d VTS |d AU@ |d OCLCQ |d JBG |d STF |d UKAHL |d OL$ |d OCLCQ |d LEAUB |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL | ||
066 | |c (S | ||
019 | |a 804048967 |a 817794859 |a 1086507907 |a 1264909998 | ||
020 | |a 9789814327916 | ||
020 | |a 9814327913 | ||
020 | |a 1281603546 | ||
020 | |a 9781281603548 | ||
020 | |z 9789814327909 | ||
020 | |z 9814327905 | ||
035 | |a (OCoLC)804661900 |z (OCoLC)804048967 |z (OCoLC)817794859 |z (OCoLC)1086507907 |z (OCoLC)1264909998 | ||
050 | 4 | |a TK7874.887 | |
072 | 7 | |a PHFC |2 bicssc | |
072 | 7 | |a TEC |x 008060 |2 bisacsh | |
072 | 7 | |a TEC |x 008070 |2 bisacsh | |
082 | 7 | |a 621.38152 | |
049 | |a MAIN | ||
100 | 1 | |a Xia, Jianbai, |d 1939- |1 https://id.oclc.org/worldcat/entity/E39PCjCRgYd9CxMFqdP69XMJcK |0 http://id.loc.gov/authorities/names/no2012132672 | |
245 | 1 | 0 | |a Semiconductor Spintronics. |
260 | |a Singapore : |b World Scientific, |c 2012. | ||
300 | |a 1 online resource (550 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
588 | 0 | |a Print version record. | |
505 | 0 | |6 880-01 |a Preface; CONTENTS; List of Acronyms; Introduction; 0.1 Origin of Spintronics -- GMR Effect Device; 0.2 New Materials for Spintronics Applications; 0.3 Spin Injection and Spin Transport of Electrons; 0.4 Optical Modulation of Spin Coherence in Semiconductors and Nanostructures; 0.5 Spin Electronic Devices; References; 1. Properties of Magnetic Ions in Semiconductors; 1.1 Electron Configuration of Magnetic Ions; 1.2 Splitting of the Basis State of Free Ions in the Crystal Field; 1.3 Crystal Field Theory; 1.4 Wave Functions of Many-electron States; 1.5 Equivalent Operator Method. | |
505 | 8 | |a 1.6 Magnetic Ion Energy Levels in Semiconductors1.7 Experimental Study of the Properties of Magnetic Ions in Semiconductors; References; 2. Properties of DMSs; 2.1 Effective-mass Theory of Semiconductors in the Magnetic Field; 2.2 DMSs of a Wide Band Gap; 2.2.1 Magnetic energy levels of wide bandgap semiconductors; 2.2.2 Magnetic interaction in DMSs; 2.2.3 DMSs of the wurtzite structure; 2.2.4 Experimental observations; 2.3 Narrow Bandgap DMSs; 2.3.1 Magnetic energy levels of narrow bandgap semiconductors; 2.3.2 Magnetic optical spectra of Hg1-xMnxTe; 2.4 Microstructures of DMSs. | |
505 | 8 | |a 2.4.1 DMS superlattices (Faraday configuration)2.4.2 DMS superlattice (Voigt configuration); 2.4.3 DMS quantum dots; 2.4.4 MP effect; 2.4.5 DMS quantum wires; 2.5 Transport Properties of DMSs; 2.6 Fe2+ Ion-doped DMSs -- Van Vleck Paramagnetism; 2.7 Giant Faraday Rotation and KR; 2.7.1 Magneto-optical property of magnetic semiconductors; 2.7.2 TRFR and TRKR in magnetic semiconductors; 2.8 Light-Induced Magnetization; References; 3. Ferromagnetic Semiconductors; 3.1 FMS Ga1-xMnxAs; 3.2 Other FMSs; 3.3 Fermi-level Engineering; 3.4 Influence of Clusters on Ferromagnetism; 3.5 QDs of FMSs. | |
505 | 8 | |a 3.6 Mean-field Theory of FMSs3.6.1 Microscopic theory of ferromagnetism; 3.6.2 Magnetic interaction in DMSs; 3.6.3 FMS quantum wires and quantum slabs; 3.6.4 Ferromagnetic semiconductor QDs; 3.7 First-principle Calculation of FMSs; 3.7.1 Simple model of the electronic structure of 3d impurities in GaAs; 3.7.2 Practical rules for ferromagnetism of 3d impurities in semiconductors; 3.8 Magnetic Polaron (MP) -- A New Mechanism of Ferromagnetism; References; 4. Injection of Spin-polarized Electrons; 4.1 Spin Lifetime and Drift of Electrons in Semiconductors; 4.2 Rashba Effect. | |
505 | 8 | |a 4.2.1 Origin of the Rashba effect4.2.2 Experimental measurement of the Rashba coefficient; 4.2.3 Theoretical calculation of the Rashba coefficient; 4.3 Semiconductor Spin Transistor and Quantum Waveguide Theory; 4.3.1 Spin-polarized tunneling transistor; 4.3.2 Semiconductor spin transistor; 4.4 Quantum Waveguide Theory of Rashba Electrons; 4.4.1 1D quantum waveguide theory of Rashba electrons; Wave function; Boundary conditions at the intersection; Transport in open circuits; 4.4.2 Transport in closed 1D loops; AB ring: closed circular ring; 4.4.3 Eigenstates in closed loops. | |
500 | |a 4.5 Production and Transport of Spin-polarized Current. | ||
520 | |a Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern found. | ||
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Spintronics. |0 http://id.loc.gov/authorities/subjects/sh2001003086 | |
650 | 0 | |a Semiconductors. |0 http://id.loc.gov/authorities/subjects/sh85119903 | |
650 | 6 | |a Électronique de spin. | |
650 | 6 | |a Semi-conducteurs. | |
650 | 7 | |a semiconductor. |2 aat | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Electronics |x Digital. |2 bisacsh | |
650 | 7 | |a TECHNOLOGY & ENGINEERING |x Electronics |x Microelectronics. |2 bisacsh | |
650 | 7 | |a Semiconductors |2 fast | |
650 | 7 | |a Spintronics |2 fast | |
700 | 1 | |a Ge, Weikun. | |
700 | 1 | |a Chang, Kai. | |
776 | 0 | 8 | |i Print version: |a Xia, Jianbai. |t Semiconductor Spintronics. |d Singapore : World Scientific, ©2012 |z 9789814327909 |
856 | 1 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479895 |3 Volltext | |
856 | 1 | |l CBO01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479895 |3 Volltext | |
880 | 8 | |6 505-01/(S |a 5.5 Experimental Studies of Spin Relaxation in III-V Compounds -- 5.5.1 Optical orientation method -- 5.5.2 Spin relaxation in InSb (EY mechanism) -- 5.5.3 Spin relaxation in GaAs (DP mechanism) -- 5.5.4 Spin relaxation in GaAs (BAP mechanism) -- 5.5.5 Dependence of spin relaxation rate on acceptor concentration -- 5.6 Spin Relaxation in Quantum Wells -- 5.7 Electron Spin Relaxation Studied by a Kinetic Spin Bloch Equation -- 5.7.1 Kinetic spin Bloch equation -- 5.7.2 Comparison of different spin relaxation mechanisms -- 5.7.3 DP spin relaxation in n-type GaAs -- 5.7.4 Spin relaxation in intrinsic GaAs -- 5.7.5 Electron spin relaxation in p-type GaAs -- References -- 6. Rashba and Dresselhaus Effects -- 6.1 Spin Splitting Induced by Spin-Orbit Interaction (SOI) in Inversion Asymmetrical Semiconductors -- Rashba and Dresselhaus Effects -- 6.1.1 Effective mass approximation -- 6.1.2 General description of the Dresselhaus effect -- 6.1.3 Relativistic quantum mechanical understanding -- 6.2 The SOI Hamiltonian in a Rashba System -- 6.3 The Rashba Effect and Dispersion -- 6.4 Rashba Parameter α -- 6.4.1 The k · p equation -- 6.4.2 The k · p treatment of SOI -- 6.4.3 The eight bandsmodel -- 6.4.4 The five bandsmodel -- 6.5 Deriving the Rashba Coefficient a from the SdH Oscillation -- 6.6 Spin-related Scattering and Spin Current -- 6.6.1 Scattering related to spin -- 6.6.2 Spin current and magnetocurrent -- References -- 7. Optical Responses of Electron Spins in Semiconductors -- 7.1 Spin of Photon or Polarization of Light -- 7.2 Spin Conservation in Optical Transitions in Semiconductors -- 7.2.1 Selection rules of optical transitions -- 7.2.2 Optical excitation for spin-split bands -- 7.3 Spin Photocurrent Induced by Optically Injected Electron Spin in a Spin Splitting System -- 7.3.1 Circular photogalvanic effect -- 7.3.2 Anomalous CPGE. | |
938 | |a Askews and Holts Library Services |b ASKH |n AH24103862 | ||
938 | |a Coutts Information Services |b COUT |n 24008261 | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL982524 | ||
938 | |a EBSCOhost |b EBSC |n 479895 | ||
938 | |a ProQuest MyiLibrary Digital eBook Collection |b IDEB |n 378423 | ||
938 | |a YBP Library Services |b YANK |n 7280417 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn804661900 |
---|---|
_version_ | 1813903582416601088 |
adam_text | |
any_adam_object | |
author | Xia, Jianbai, 1939- |
author2 | Ge, Weikun Chang, Kai |
author2_role | |
author2_variant | w g wg k c kc |
author_GND | http://id.loc.gov/authorities/names/no2012132672 |
author_facet | Xia, Jianbai, 1939- Ge, Weikun Chang, Kai |
author_role | |
author_sort | Xia, Jianbai, 1939- |
author_variant | j x jx |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | T - Technology |
callnumber-label | TK7874 |
callnumber-raw | TK7874.887 |
callnumber-search | TK7874.887 |
callnumber-sort | TK 47874.887 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
collection | ZDB-4-EBA |
contents | Preface; CONTENTS; List of Acronyms; Introduction; 0.1 Origin of Spintronics -- GMR Effect Device; 0.2 New Materials for Spintronics Applications; 0.3 Spin Injection and Spin Transport of Electrons; 0.4 Optical Modulation of Spin Coherence in Semiconductors and Nanostructures; 0.5 Spin Electronic Devices; References; 1. Properties of Magnetic Ions in Semiconductors; 1.1 Electron Configuration of Magnetic Ions; 1.2 Splitting of the Basis State of Free Ions in the Crystal Field; 1.3 Crystal Field Theory; 1.4 Wave Functions of Many-electron States; 1.5 Equivalent Operator Method. 1.6 Magnetic Ion Energy Levels in Semiconductors1.7 Experimental Study of the Properties of Magnetic Ions in Semiconductors; References; 2. Properties of DMSs; 2.1 Effective-mass Theory of Semiconductors in the Magnetic Field; 2.2 DMSs of a Wide Band Gap; 2.2.1 Magnetic energy levels of wide bandgap semiconductors; 2.2.2 Magnetic interaction in DMSs; 2.2.3 DMSs of the wurtzite structure; 2.2.4 Experimental observations; 2.3 Narrow Bandgap DMSs; 2.3.1 Magnetic energy levels of narrow bandgap semiconductors; 2.3.2 Magnetic optical spectra of Hg1-xMnxTe; 2.4 Microstructures of DMSs. 2.4.1 DMS superlattices (Faraday configuration)2.4.2 DMS superlattice (Voigt configuration); 2.4.3 DMS quantum dots; 2.4.4 MP effect; 2.4.5 DMS quantum wires; 2.5 Transport Properties of DMSs; 2.6 Fe2+ Ion-doped DMSs -- Van Vleck Paramagnetism; 2.7 Giant Faraday Rotation and KR; 2.7.1 Magneto-optical property of magnetic semiconductors; 2.7.2 TRFR and TRKR in magnetic semiconductors; 2.8 Light-Induced Magnetization; References; 3. Ferromagnetic Semiconductors; 3.1 FMS Ga1-xMnxAs; 3.2 Other FMSs; 3.3 Fermi-level Engineering; 3.4 Influence of Clusters on Ferromagnetism; 3.5 QDs of FMSs. 3.6 Mean-field Theory of FMSs3.6.1 Microscopic theory of ferromagnetism; 3.6.2 Magnetic interaction in DMSs; 3.6.3 FMS quantum wires and quantum slabs; 3.6.4 Ferromagnetic semiconductor QDs; 3.7 First-principle Calculation of FMSs; 3.7.1 Simple model of the electronic structure of 3d impurities in GaAs; 3.7.2 Practical rules for ferromagnetism of 3d impurities in semiconductors; 3.8 Magnetic Polaron (MP) -- A New Mechanism of Ferromagnetism; References; 4. Injection of Spin-polarized Electrons; 4.1 Spin Lifetime and Drift of Electrons in Semiconductors; 4.2 Rashba Effect. 4.2.1 Origin of the Rashba effect4.2.2 Experimental measurement of the Rashba coefficient; 4.2.3 Theoretical calculation of the Rashba coefficient; 4.3 Semiconductor Spin Transistor and Quantum Waveguide Theory; 4.3.1 Spin-polarized tunneling transistor; 4.3.2 Semiconductor spin transistor; 4.4 Quantum Waveguide Theory of Rashba Electrons; 4.4.1 1D quantum waveguide theory of Rashba electrons; Wave function; Boundary conditions at the intersection; Transport in open circuits; 4.4.2 Transport in closed 1D loops; AB ring: closed circular ring; 4.4.3 Eigenstates in closed loops. |
ctrlnum | (OCoLC)804661900 |
dewey-full | 621.38152 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.38152 |
dewey-search | 621.38152 |
dewey-sort | 3621.38152 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08267cam a2200733Mu 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn804661900</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20240705115654.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr un|||||||||</controlfield><controlfield tag="008">120806s2012 si ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">FDA</subfield><subfield code="d">OCLCO</subfield><subfield code="d">IDEBK</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">I9W</subfield><subfield code="d">N$T</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AGLDB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">NJR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UUM</subfield><subfield code="d">VNS</subfield><subfield code="d">VTS</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">JBG</subfield><subfield code="d">STF</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LEAUB</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="066" ind1=" " ind2=" "><subfield code="c">(S</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">804048967</subfield><subfield code="a">817794859</subfield><subfield code="a">1086507907</subfield><subfield code="a">1264909998</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814327916</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814327913</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1281603546</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281603548</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789814327909</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9814327905</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)804661900</subfield><subfield code="z">(OCoLC)804048967</subfield><subfield code="z">(OCoLC)817794859</subfield><subfield code="z">(OCoLC)1086507907</subfield><subfield code="z">(OCoLC)1264909998</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TK7874.887</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">PHFC</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">008060</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">008070</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">621.38152</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xia, Jianbai,</subfield><subfield code="d">1939-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjCRgYd9CxMFqdP69XMJcK</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2012132672</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semiconductor Spintronics.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Singapore :</subfield><subfield code="b">World Scientific,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (550 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="6">880-01</subfield><subfield code="a">Preface; CONTENTS; List of Acronyms; Introduction; 0.1 Origin of Spintronics -- GMR Effect Device; 0.2 New Materials for Spintronics Applications; 0.3 Spin Injection and Spin Transport of Electrons; 0.4 Optical Modulation of Spin Coherence in Semiconductors and Nanostructures; 0.5 Spin Electronic Devices; References; 1. Properties of Magnetic Ions in Semiconductors; 1.1 Electron Configuration of Magnetic Ions; 1.2 Splitting of the Basis State of Free Ions in the Crystal Field; 1.3 Crystal Field Theory; 1.4 Wave Functions of Many-electron States; 1.5 Equivalent Operator Method.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.6 Magnetic Ion Energy Levels in Semiconductors1.7 Experimental Study of the Properties of Magnetic Ions in Semiconductors; References; 2. Properties of DMSs; 2.1 Effective-mass Theory of Semiconductors in the Magnetic Field; 2.2 DMSs of a Wide Band Gap; 2.2.1 Magnetic energy levels of wide bandgap semiconductors; 2.2.2 Magnetic interaction in DMSs; 2.2.3 DMSs of the wurtzite structure; 2.2.4 Experimental observations; 2.3 Narrow Bandgap DMSs; 2.3.1 Magnetic energy levels of narrow bandgap semiconductors; 2.3.2 Magnetic optical spectra of Hg1-xMnxTe; 2.4 Microstructures of DMSs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4.1 DMS superlattices (Faraday configuration)2.4.2 DMS superlattice (Voigt configuration); 2.4.3 DMS quantum dots; 2.4.4 MP effect; 2.4.5 DMS quantum wires; 2.5 Transport Properties of DMSs; 2.6 Fe2+ Ion-doped DMSs -- Van Vleck Paramagnetism; 2.7 Giant Faraday Rotation and KR; 2.7.1 Magneto-optical property of magnetic semiconductors; 2.7.2 TRFR and TRKR in magnetic semiconductors; 2.8 Light-Induced Magnetization; References; 3. Ferromagnetic Semiconductors; 3.1 FMS Ga1-xMnxAs; 3.2 Other FMSs; 3.3 Fermi-level Engineering; 3.4 Influence of Clusters on Ferromagnetism; 3.5 QDs of FMSs.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6 Mean-field Theory of FMSs3.6.1 Microscopic theory of ferromagnetism; 3.6.2 Magnetic interaction in DMSs; 3.6.3 FMS quantum wires and quantum slabs; 3.6.4 Ferromagnetic semiconductor QDs; 3.7 First-principle Calculation of FMSs; 3.7.1 Simple model of the electronic structure of 3d impurities in GaAs; 3.7.2 Practical rules for ferromagnetism of 3d impurities in semiconductors; 3.8 Magnetic Polaron (MP) -- A New Mechanism of Ferromagnetism; References; 4. Injection of Spin-polarized Electrons; 4.1 Spin Lifetime and Drift of Electrons in Semiconductors; 4.2 Rashba Effect.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.2.1 Origin of the Rashba effect4.2.2 Experimental measurement of the Rashba coefficient; 4.2.3 Theoretical calculation of the Rashba coefficient; 4.3 Semiconductor Spin Transistor and Quantum Waveguide Theory; 4.3.1 Spin-polarized tunneling transistor; 4.3.2 Semiconductor spin transistor; 4.4 Quantum Waveguide Theory of Rashba Electrons; 4.4.1 1D quantum waveguide theory of Rashba electrons; Wave function; Boundary conditions at the intersection; Transport in open circuits; 4.4.2 Transport in closed 1D loops; AB ring: closed circular ring; 4.4.3 Eigenstates in closed loops.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4.5 Production and Transport of Spin-polarized Current.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern found.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Spintronics.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh2001003086</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Semiconductors.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85119903</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Électronique de spin.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Semi-conducteurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">semiconductor.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Electronics</subfield><subfield code="x">Digital.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY & ENGINEERING</subfield><subfield code="x">Electronics</subfield><subfield code="x">Microelectronics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Semiconductors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Spintronics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ge, Weikun.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chang, Kai.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Xia, Jianbai.</subfield><subfield code="t">Semiconductor Spintronics.</subfield><subfield code="d">Singapore : World Scientific, ©2012</subfield><subfield code="z">9789814327909</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479895</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="1" ind2=" "><subfield code="l">CBO01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479895</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="880" ind1="8" ind2=" "><subfield code="6">505-01/(S</subfield><subfield code="a">5.5 Experimental Studies of Spin Relaxation in III-V Compounds -- 5.5.1 Optical orientation method -- 5.5.2 Spin relaxation in InSb (EY mechanism) -- 5.5.3 Spin relaxation in GaAs (DP mechanism) -- 5.5.4 Spin relaxation in GaAs (BAP mechanism) -- 5.5.5 Dependence of spin relaxation rate on acceptor concentration -- 5.6 Spin Relaxation in Quantum Wells -- 5.7 Electron Spin Relaxation Studied by a Kinetic Spin Bloch Equation -- 5.7.1 Kinetic spin Bloch equation -- 5.7.2 Comparison of different spin relaxation mechanisms -- 5.7.3 DP spin relaxation in n-type GaAs -- 5.7.4 Spin relaxation in intrinsic GaAs -- 5.7.5 Electron spin relaxation in p-type GaAs -- References -- 6. Rashba and Dresselhaus Effects -- 6.1 Spin Splitting Induced by Spin-Orbit Interaction (SOI) in Inversion Asymmetrical Semiconductors -- Rashba and Dresselhaus Effects -- 6.1.1 Effective mass approximation -- 6.1.2 General description of the Dresselhaus effect -- 6.1.3 Relativistic quantum mechanical understanding -- 6.2 The SOI Hamiltonian in a Rashba System -- 6.3 The Rashba Effect and Dispersion -- 6.4 Rashba Parameter α -- 6.4.1 The k · p equation -- 6.4.2 The k · p treatment of SOI -- 6.4.3 The eight bandsmodel -- 6.4.4 The five bandsmodel -- 6.5 Deriving the Rashba Coefficient a from the SdH Oscillation -- 6.6 Spin-related Scattering and Spin Current -- 6.6.1 Scattering related to spin -- 6.6.2 Spin current and magnetocurrent -- References -- 7. Optical Responses of Electron Spins in Semiconductors -- 7.1 Spin of Photon or Polarization of Light -- 7.2 Spin Conservation in Optical Transitions in Semiconductors -- 7.2.1 Selection rules of optical transitions -- 7.2.2 Optical excitation for spin-split bands -- 7.3 Spin Photocurrent Induced by Optically Injected Electron Spin in a Spin Splitting System -- 7.3.1 Circular photogalvanic effect -- 7.3.2 Anomalous CPGE.</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH24103862</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">24008261</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL982524</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">479895</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ProQuest MyiLibrary Digital eBook Collection</subfield><subfield code="b">IDEB</subfield><subfield code="n">378423</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7280417</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn804661900 |
illustrated | Not Illustrated |
indexdate | 2024-10-25T16:20:58Z |
institution | BVB |
isbn | 9789814327916 9814327913 1281603546 9781281603548 |
language | English |
oclc_num | 804661900 |
open_access_boolean | |
owner | MAIN |
owner_facet | MAIN |
physical | 1 online resource (550 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific, |
record_format | marc |
spelling | Xia, Jianbai, 1939- https://id.oclc.org/worldcat/entity/E39PCjCRgYd9CxMFqdP69XMJcK http://id.loc.gov/authorities/names/no2012132672 Semiconductor Spintronics. Singapore : World Scientific, 2012. 1 online resource (550 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Print version record. 880-01 Preface; CONTENTS; List of Acronyms; Introduction; 0.1 Origin of Spintronics -- GMR Effect Device; 0.2 New Materials for Spintronics Applications; 0.3 Spin Injection and Spin Transport of Electrons; 0.4 Optical Modulation of Spin Coherence in Semiconductors and Nanostructures; 0.5 Spin Electronic Devices; References; 1. Properties of Magnetic Ions in Semiconductors; 1.1 Electron Configuration of Magnetic Ions; 1.2 Splitting of the Basis State of Free Ions in the Crystal Field; 1.3 Crystal Field Theory; 1.4 Wave Functions of Many-electron States; 1.5 Equivalent Operator Method. 1.6 Magnetic Ion Energy Levels in Semiconductors1.7 Experimental Study of the Properties of Magnetic Ions in Semiconductors; References; 2. Properties of DMSs; 2.1 Effective-mass Theory of Semiconductors in the Magnetic Field; 2.2 DMSs of a Wide Band Gap; 2.2.1 Magnetic energy levels of wide bandgap semiconductors; 2.2.2 Magnetic interaction in DMSs; 2.2.3 DMSs of the wurtzite structure; 2.2.4 Experimental observations; 2.3 Narrow Bandgap DMSs; 2.3.1 Magnetic energy levels of narrow bandgap semiconductors; 2.3.2 Magnetic optical spectra of Hg1-xMnxTe; 2.4 Microstructures of DMSs. 2.4.1 DMS superlattices (Faraday configuration)2.4.2 DMS superlattice (Voigt configuration); 2.4.3 DMS quantum dots; 2.4.4 MP effect; 2.4.5 DMS quantum wires; 2.5 Transport Properties of DMSs; 2.6 Fe2+ Ion-doped DMSs -- Van Vleck Paramagnetism; 2.7 Giant Faraday Rotation and KR; 2.7.1 Magneto-optical property of magnetic semiconductors; 2.7.2 TRFR and TRKR in magnetic semiconductors; 2.8 Light-Induced Magnetization; References; 3. Ferromagnetic Semiconductors; 3.1 FMS Ga1-xMnxAs; 3.2 Other FMSs; 3.3 Fermi-level Engineering; 3.4 Influence of Clusters on Ferromagnetism; 3.5 QDs of FMSs. 3.6 Mean-field Theory of FMSs3.6.1 Microscopic theory of ferromagnetism; 3.6.2 Magnetic interaction in DMSs; 3.6.3 FMS quantum wires and quantum slabs; 3.6.4 Ferromagnetic semiconductor QDs; 3.7 First-principle Calculation of FMSs; 3.7.1 Simple model of the electronic structure of 3d impurities in GaAs; 3.7.2 Practical rules for ferromagnetism of 3d impurities in semiconductors; 3.8 Magnetic Polaron (MP) -- A New Mechanism of Ferromagnetism; References; 4. Injection of Spin-polarized Electrons; 4.1 Spin Lifetime and Drift of Electrons in Semiconductors; 4.2 Rashba Effect. 4.2.1 Origin of the Rashba effect4.2.2 Experimental measurement of the Rashba coefficient; 4.2.3 Theoretical calculation of the Rashba coefficient; 4.3 Semiconductor Spin Transistor and Quantum Waveguide Theory; 4.3.1 Spin-polarized tunneling transistor; 4.3.2 Semiconductor spin transistor; 4.4 Quantum Waveguide Theory of Rashba Electrons; 4.4.1 1D quantum waveguide theory of Rashba electrons; Wave function; Boundary conditions at the intersection; Transport in open circuits; 4.4.2 Transport in closed 1D loops; AB ring: closed circular ring; 4.4.3 Eigenstates in closed loops. 4.5 Production and Transport of Spin-polarized Current. Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern found. Includes bibliographical references and index. Spintronics. http://id.loc.gov/authorities/subjects/sh2001003086 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Électronique de spin. Semi-conducteurs. semiconductor. aat TECHNOLOGY & ENGINEERING Electronics Digital. bisacsh TECHNOLOGY & ENGINEERING Electronics Microelectronics. bisacsh Semiconductors fast Spintronics fast Ge, Weikun. Chang, Kai. Print version: Xia, Jianbai. Semiconductor Spintronics. Singapore : World Scientific, ©2012 9789814327909 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479895 Volltext CBO01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479895 Volltext 505-01/(S 5.5 Experimental Studies of Spin Relaxation in III-V Compounds -- 5.5.1 Optical orientation method -- 5.5.2 Spin relaxation in InSb (EY mechanism) -- 5.5.3 Spin relaxation in GaAs (DP mechanism) -- 5.5.4 Spin relaxation in GaAs (BAP mechanism) -- 5.5.5 Dependence of spin relaxation rate on acceptor concentration -- 5.6 Spin Relaxation in Quantum Wells -- 5.7 Electron Spin Relaxation Studied by a Kinetic Spin Bloch Equation -- 5.7.1 Kinetic spin Bloch equation -- 5.7.2 Comparison of different spin relaxation mechanisms -- 5.7.3 DP spin relaxation in n-type GaAs -- 5.7.4 Spin relaxation in intrinsic GaAs -- 5.7.5 Electron spin relaxation in p-type GaAs -- References -- 6. Rashba and Dresselhaus Effects -- 6.1 Spin Splitting Induced by Spin-Orbit Interaction (SOI) in Inversion Asymmetrical Semiconductors -- Rashba and Dresselhaus Effects -- 6.1.1 Effective mass approximation -- 6.1.2 General description of the Dresselhaus effect -- 6.1.3 Relativistic quantum mechanical understanding -- 6.2 The SOI Hamiltonian in a Rashba System -- 6.3 The Rashba Effect and Dispersion -- 6.4 Rashba Parameter α -- 6.4.1 The k · p equation -- 6.4.2 The k · p treatment of SOI -- 6.4.3 The eight bandsmodel -- 6.4.4 The five bandsmodel -- 6.5 Deriving the Rashba Coefficient a from the SdH Oscillation -- 6.6 Spin-related Scattering and Spin Current -- 6.6.1 Scattering related to spin -- 6.6.2 Spin current and magnetocurrent -- References -- 7. Optical Responses of Electron Spins in Semiconductors -- 7.1 Spin of Photon or Polarization of Light -- 7.2 Spin Conservation in Optical Transitions in Semiconductors -- 7.2.1 Selection rules of optical transitions -- 7.2.2 Optical excitation for spin-split bands -- 7.3 Spin Photocurrent Induced by Optically Injected Electron Spin in a Spin Splitting System -- 7.3.1 Circular photogalvanic effect -- 7.3.2 Anomalous CPGE. |
spellingShingle | Xia, Jianbai, 1939- Semiconductor Spintronics. Preface; CONTENTS; List of Acronyms; Introduction; 0.1 Origin of Spintronics -- GMR Effect Device; 0.2 New Materials for Spintronics Applications; 0.3 Spin Injection and Spin Transport of Electrons; 0.4 Optical Modulation of Spin Coherence in Semiconductors and Nanostructures; 0.5 Spin Electronic Devices; References; 1. Properties of Magnetic Ions in Semiconductors; 1.1 Electron Configuration of Magnetic Ions; 1.2 Splitting of the Basis State of Free Ions in the Crystal Field; 1.3 Crystal Field Theory; 1.4 Wave Functions of Many-electron States; 1.5 Equivalent Operator Method. 1.6 Magnetic Ion Energy Levels in Semiconductors1.7 Experimental Study of the Properties of Magnetic Ions in Semiconductors; References; 2. Properties of DMSs; 2.1 Effective-mass Theory of Semiconductors in the Magnetic Field; 2.2 DMSs of a Wide Band Gap; 2.2.1 Magnetic energy levels of wide bandgap semiconductors; 2.2.2 Magnetic interaction in DMSs; 2.2.3 DMSs of the wurtzite structure; 2.2.4 Experimental observations; 2.3 Narrow Bandgap DMSs; 2.3.1 Magnetic energy levels of narrow bandgap semiconductors; 2.3.2 Magnetic optical spectra of Hg1-xMnxTe; 2.4 Microstructures of DMSs. 2.4.1 DMS superlattices (Faraday configuration)2.4.2 DMS superlattice (Voigt configuration); 2.4.3 DMS quantum dots; 2.4.4 MP effect; 2.4.5 DMS quantum wires; 2.5 Transport Properties of DMSs; 2.6 Fe2+ Ion-doped DMSs -- Van Vleck Paramagnetism; 2.7 Giant Faraday Rotation and KR; 2.7.1 Magneto-optical property of magnetic semiconductors; 2.7.2 TRFR and TRKR in magnetic semiconductors; 2.8 Light-Induced Magnetization; References; 3. Ferromagnetic Semiconductors; 3.1 FMS Ga1-xMnxAs; 3.2 Other FMSs; 3.3 Fermi-level Engineering; 3.4 Influence of Clusters on Ferromagnetism; 3.5 QDs of FMSs. 3.6 Mean-field Theory of FMSs3.6.1 Microscopic theory of ferromagnetism; 3.6.2 Magnetic interaction in DMSs; 3.6.3 FMS quantum wires and quantum slabs; 3.6.4 Ferromagnetic semiconductor QDs; 3.7 First-principle Calculation of FMSs; 3.7.1 Simple model of the electronic structure of 3d impurities in GaAs; 3.7.2 Practical rules for ferromagnetism of 3d impurities in semiconductors; 3.8 Magnetic Polaron (MP) -- A New Mechanism of Ferromagnetism; References; 4. Injection of Spin-polarized Electrons; 4.1 Spin Lifetime and Drift of Electrons in Semiconductors; 4.2 Rashba Effect. 4.2.1 Origin of the Rashba effect4.2.2 Experimental measurement of the Rashba coefficient; 4.2.3 Theoretical calculation of the Rashba coefficient; 4.3 Semiconductor Spin Transistor and Quantum Waveguide Theory; 4.3.1 Spin-polarized tunneling transistor; 4.3.2 Semiconductor spin transistor; 4.4 Quantum Waveguide Theory of Rashba Electrons; 4.4.1 1D quantum waveguide theory of Rashba electrons; Wave function; Boundary conditions at the intersection; Transport in open circuits; 4.4.2 Transport in closed 1D loops; AB ring: closed circular ring; 4.4.3 Eigenstates in closed loops. Spintronics. http://id.loc.gov/authorities/subjects/sh2001003086 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Électronique de spin. Semi-conducteurs. semiconductor. aat TECHNOLOGY & ENGINEERING Electronics Digital. bisacsh TECHNOLOGY & ENGINEERING Electronics Microelectronics. bisacsh Semiconductors fast Spintronics fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh2001003086 http://id.loc.gov/authorities/subjects/sh85119903 |
title | Semiconductor Spintronics. |
title_auth | Semiconductor Spintronics. |
title_exact_search | Semiconductor Spintronics. |
title_full | Semiconductor Spintronics. |
title_fullStr | Semiconductor Spintronics. |
title_full_unstemmed | Semiconductor Spintronics. |
title_short | Semiconductor Spintronics. |
title_sort | semiconductor spintronics |
topic | Spintronics. http://id.loc.gov/authorities/subjects/sh2001003086 Semiconductors. http://id.loc.gov/authorities/subjects/sh85119903 Électronique de spin. Semi-conducteurs. semiconductor. aat TECHNOLOGY & ENGINEERING Electronics Digital. bisacsh TECHNOLOGY & ENGINEERING Electronics Microelectronics. bisacsh Semiconductors fast Spintronics fast |
topic_facet | Spintronics. Semiconductors. Électronique de spin. Semi-conducteurs. semiconductor. TECHNOLOGY & ENGINEERING Electronics Digital. TECHNOLOGY & ENGINEERING Electronics Microelectronics. Semiconductors Spintronics |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=479895 |
work_keys_str_mv | AT xiajianbai semiconductorspintronics AT geweikun semiconductorspintronics AT changkai semiconductorspintronics |