Geometric analysis of hyperbolic differential equations :: an introduction /
"Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lo...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, UK ; New York :
Cambridge University Press,
2010.
|
Schriftenreihe: | London Mathematical Society lecture note series ;
374. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher "The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hörmander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hörmander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher. |
Beschreibung: | 1 online resource (ix, 118 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139127844 1139127845 9781139107198 1139107194 9781139115018 1139115014 1107203589 9781107203587 1283296039 9781283296038 1139122924 9781139122924 9786613296030 6613296031 1139117181 9781139117180 1139112821 9781139112826 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn802261816 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120730s2010 enk ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d CDX |d E7B |d YDXCP |d MYG |d REDDC |d OCLCQ |d DEBSZ |d OCLCQ |d CUS |d AUD |d N15 |d OCLCF |d OCLCQ |d HEBIS |d OCLCO |d UAB |d OCLCQ |d OCLCA |d INT |d OCLCQ |d AU@ |d OCLCO |d VLY |d UKAHL |d OCLCQ |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SFB |d OCLCQ | ||
019 | |a 759007181 |a 778921102 |a 1162458734 |a 1167196622 |a 1241847414 | ||
020 | |a 9781139127844 |q (electronic bk.) | ||
020 | |a 1139127845 |q (electronic bk.) | ||
020 | |a 9781139107198 |q (electronic bk.) | ||
020 | |a 1139107194 |q (electronic bk.) | ||
020 | |a 9781139115018 |q (eISBN) | ||
020 | |a 1139115014 |q (eISBN) | ||
020 | |a 1107203589 | ||
020 | |a 9781107203587 | ||
020 | |a 1283296039 | ||
020 | |a 9781283296038 | ||
020 | |a 1139122924 | ||
020 | |a 9781139122924 | ||
020 | |a 9786613296030 | ||
020 | |a 6613296031 | ||
020 | |a 1139117181 | ||
020 | |a 9781139117180 | ||
020 | |a 1139112821 | ||
020 | |a 9781139112826 | ||
020 | |z 9780521128223 | ||
020 | |z 0521128226 | ||
024 | 8 | |a 9786613296030 | |
035 | |a (OCoLC)802261816 |z (OCoLC)759007181 |z (OCoLC)778921102 |z (OCoLC)1162458734 |z (OCoLC)1167196622 |z (OCoLC)1241847414 | ||
037 | |a 329603 |b MIL | ||
050 | 4 | |a QA927 |b .A3886 2010eb | |
072 | 7 | |a s1ma |2 rero | |
072 | 7 | |a MAT |x 007020 |2 bisacsh | |
082 | 7 | |a 515/.3535 |2 22 | |
084 | |a SI 320 |2 rvk | ||
084 | |a SK 540 |2 rvk | ||
084 | |a SK 560 |2 rvk | ||
084 | |a MAT 357f |2 stub | ||
084 | |a PHY 041f |2 stub | ||
049 | |a MAIN | ||
100 | 1 | |a Alinhac, S. |q (Serge) |1 https://id.oclc.org/worldcat/entity/E39PBJrwMjXb3Q9c4VQYBFy8G3 |0 http://id.loc.gov/authorities/names/n89663168 | |
245 | 1 | 0 | |a Geometric analysis of hyperbolic differential equations : |b an introduction / |c S. Alinhac. |
260 | |a Cambridge, UK ; |a New York : |b Cambridge University Press, |c 2010. | ||
300 | |a 1 online resource (ix, 118 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society lecture note series ; |v 374 | |
520 | |a "Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher | ||
520 | |a "The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hörmander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hörmander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index. | |
588 | 0 | |a Print version record. | |
546 | |a English. | ||
650 | 0 | |a Nonlinear wave equations. |0 http://id.loc.gov/authorities/subjects/sh89005869 | |
650 | 0 | |a Differential equations, Hyperbolic. |0 http://id.loc.gov/authorities/subjects/sh85037899 | |
650 | 0 | |a Quantum theory. |0 http://id.loc.gov/authorities/subjects/sh85109469 | |
650 | 0 | |a Geometry, Differential. |0 http://id.loc.gov/authorities/subjects/sh85054146 | |
650 | 6 | |a Équations d'onde non linéaires. | |
650 | 6 | |a Équations différentielles hyperboliques. | |
650 | 6 | |a Théorie quantique. | |
650 | 6 | |a Géométrie différentielle. | |
650 | 7 | |a MATHEMATICS |x Differential Equations |x Partial. |2 bisacsh | |
650 | 7 | |a Differential equations, Hyperbolic |2 fast | |
650 | 7 | |a Geometry, Differential |2 fast | |
650 | 7 | |a Nonlinear wave equations |2 fast | |
650 | 7 | |a Quantum theory |2 fast | |
650 | 7 | |a Hyperbolische Differentialgleichung |2 gnd | |
650 | 7 | |a Nichtlineare Wellengleichung |2 gnd |0 http://d-nb.info/gnd/4042104-1 | |
758 | |i has work: |a Geometric analysis of hyperbolic differential equations (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG8HjWqWcYGMBfKGbtkcrq |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Alinhac, S. (Serge). |t Geometric analysis of hyperbolic differential equations. |d Cambridge, UK ; New York : Cambridge University Press, 2010 |z 9780521128223 |w (DLC) 2010001099 |w (OCoLC)489001674 |
830 | 0 | |a London Mathematical Society lecture note series ; |v 374. |0 http://id.loc.gov/authorities/names/n42015587 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399270 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH21459129 | ||
938 | |a Coutts Information Services |b COUT |n 19724663 | ||
938 | |a ebrary |b EBRY |n ebr10502673 | ||
938 | |a EBSCOhost |b EBSC |n 399270 | ||
938 | |a YBP Library Services |b YANK |n 7465560 | ||
938 | |a YBP Library Services |b YANK |n 7205452 | ||
938 | |a YBP Library Services |b YANK |n 7302896 | ||
938 | |a YBP Library Services |b YANK |n 9523235 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn802261816 |
---|---|
_version_ | 1816882202361724928 |
adam_text | |
any_adam_object | |
author | Alinhac, S. (Serge) |
author_GND | http://id.loc.gov/authorities/names/n89663168 |
author_facet | Alinhac, S. (Serge) |
author_role | |
author_sort | Alinhac, S. |
author_variant | s a sa |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA927 |
callnumber-raw | QA927 .A3886 2010eb |
callnumber-search | QA927 .A3886 2010eb |
callnumber-sort | QA 3927 A3886 42010EB |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 320 SK 540 SK 560 |
classification_tum | MAT 357f PHY 041f |
collection | ZDB-4-EBA |
contents | 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index. |
ctrlnum | (OCoLC)802261816 |
dewey-full | 515/.3535 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.3535 |
dewey-search | 515/.3535 |
dewey-sort | 3515 43535 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06614cam a2201021 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn802261816</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120730s2010 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">CDX</subfield><subfield code="d">E7B</subfield><subfield code="d">YDXCP</subfield><subfield code="d">MYG</subfield><subfield code="d">REDDC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CUS</subfield><subfield code="d">AUD</subfield><subfield code="d">N15</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">HEBIS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">INT</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">AU@</subfield><subfield code="d">OCLCO</subfield><subfield code="d">VLY</subfield><subfield code="d">UKAHL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SFB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">759007181</subfield><subfield code="a">778921102</subfield><subfield code="a">1162458734</subfield><subfield code="a">1167196622</subfield><subfield code="a">1241847414</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139127844</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139127845</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139107198</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139107194</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139115018</subfield><subfield code="q">(eISBN)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139115014</subfield><subfield code="q">(eISBN)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107203589</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107203587</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1283296039</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781283296038</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139122924</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139122924</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613296030</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613296031</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139117181</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139117180</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139112821</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139112826</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521128223</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521128226</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613296030</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)802261816</subfield><subfield code="z">(OCoLC)759007181</subfield><subfield code="z">(OCoLC)778921102</subfield><subfield code="z">(OCoLC)1162458734</subfield><subfield code="z">(OCoLC)1167196622</subfield><subfield code="z">(OCoLC)1241847414</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">329603</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA927</subfield><subfield code="b">.A3886 2010eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">s1ma</subfield><subfield code="2">rero</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">007020</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.3535</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 320</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 357f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 041f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Alinhac, S.</subfield><subfield code="q">(Serge)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJrwMjXb3Q9c4VQYBFy8G3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n89663168</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric analysis of hyperbolic differential equations :</subfield><subfield code="b">an introduction /</subfield><subfield code="c">S. Alinhac.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge, UK ;</subfield><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2010.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 118 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">374</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hörmander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hörmander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Nonlinear wave equations.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh89005869</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Differential equations, Hyperbolic.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85037899</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Quantum theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85109469</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry, Differential.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054146</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations d'onde non linéaires.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Équations différentielles hyperboliques.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie quantique.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie différentielle.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Differential Equations</subfield><subfield code="x">Partial.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Differential equations, Hyperbolic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Differential</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nonlinear wave equations</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Quantum theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="2">gnd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Nichtlineare Wellengleichung</subfield><subfield code="2">gnd</subfield><subfield code="0">http://d-nb.info/gnd/4042104-1</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Geometric analysis of hyperbolic differential equations (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG8HjWqWcYGMBfKGbtkcrq</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Alinhac, S. (Serge).</subfield><subfield code="t">Geometric analysis of hyperbolic differential equations.</subfield><subfield code="d">Cambridge, UK ; New York : Cambridge University Press, 2010</subfield><subfield code="z">9780521128223</subfield><subfield code="w">(DLC) 2010001099</subfield><subfield code="w">(OCoLC)489001674</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society lecture note series ;</subfield><subfield code="v">374.</subfield><subfield code="0">http://id.loc.gov/authorities/names/n42015587</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399270</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH21459129</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">19724663</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10502673</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">399270</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7465560</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7205452</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7302896</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9523235</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn802261816 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:24:52Z |
institution | BVB |
isbn | 9781139127844 1139127845 9781139107198 1139107194 9781139115018 1139115014 1107203589 9781107203587 1283296039 9781283296038 1139122924 9781139122924 9786613296030 6613296031 1139117181 9781139117180 1139112821 9781139112826 |
language | English |
oclc_num | 802261816 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 118 pages) |
psigel | ZDB-4-EBA |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge University Press, |
record_format | marc |
series | London Mathematical Society lecture note series ; |
series2 | London Mathematical Society lecture note series ; |
spelling | Alinhac, S. (Serge) https://id.oclc.org/worldcat/entity/E39PBJrwMjXb3Q9c4VQYBFy8G3 http://id.loc.gov/authorities/names/n89663168 Geometric analysis of hyperbolic differential equations : an introduction / S. Alinhac. Cambridge, UK ; New York : Cambridge University Press, 2010. 1 online resource (ix, 118 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier London Mathematical Society lecture note series ; 374 "Its self-contained presentation and 'do-it-yourself' approach make this the perfect guide for graduate students and researchers wishing to access recent literature in the field of nonlinear wave equations and general relativity. It introduces all of the key tools and concepts from Lorentzian geometry (metrics, null frames, deformation tensors, etc.) and provides complete elementary proofs. The author also discusses applications to topics in nonlinear equations, including null conditions and stability of Minkowski space. No previous knowledge of geometry or relativity is required"--Provided by publisher "The field of nonlinear hyperbolic equations or systems has seen a tremendous development since the beginning of the 1980s. We are concentrating here on multidimensional situations, and on quasilinear equations or systems, that is, when the coefficients of the principal part depend on the unknown function itself. The pioneering works by F. John, D. Christodoulou, L. Hörmander, S. Klainerman, A. Majda and many others have been devoted mainly to the questions of blowup, lifespan, shocks, global existence, etc. Some overview of the classical results can be found in the books of Majda [42] and Hörmander [24]. On the other hand, Christodoulou and Klainerman [18] proved in around 1990 the stability of Minkowski space, a striking mathematical result about the Cauchy problem for the Einstein equations. After that, many works have dealt with diagonal systems of quasilinear wave equations, since this is what Einstein equations reduce to when written in the so-called harmonic coordinates. The main feature of this particular case is that the (scalar) principal part of the system is a wave operator associated to a unique Lorentzian metric on the underlying space-time"--Provided by publisher. Includes bibliographical references and index. 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index. Print version record. English. Nonlinear wave equations. http://id.loc.gov/authorities/subjects/sh89005869 Differential equations, Hyperbolic. http://id.loc.gov/authorities/subjects/sh85037899 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Équations d'onde non linéaires. Équations différentielles hyperboliques. Théorie quantique. Géométrie différentielle. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Hyperbolic fast Geometry, Differential fast Nonlinear wave equations fast Quantum theory fast Hyperbolische Differentialgleichung gnd Nichtlineare Wellengleichung gnd http://d-nb.info/gnd/4042104-1 has work: Geometric analysis of hyperbolic differential equations (Text) https://id.oclc.org/worldcat/entity/E39PCG8HjWqWcYGMBfKGbtkcrq https://id.oclc.org/worldcat/ontology/hasWork Print version: Alinhac, S. (Serge). Geometric analysis of hyperbolic differential equations. Cambridge, UK ; New York : Cambridge University Press, 2010 9780521128223 (DLC) 2010001099 (OCoLC)489001674 London Mathematical Society lecture note series ; 374. http://id.loc.gov/authorities/names/n42015587 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399270 Volltext |
spellingShingle | Alinhac, S. (Serge) Geometric analysis of hyperbolic differential equations : an introduction / London Mathematical Society lecture note series ; 1. Introduction -- 2. Metrics and frames -- 3. Computing with frames -- 4. Energy inequalities and frames -- 5. The good components -- 6. Pointwise estimates and commutations -- 7. Frames and curvature -- 8. Nonlinear equations, a priori estimates and induction -- 9. Applications to some quasilinear hyperbolic problems -- References -- Index. Nonlinear wave equations. http://id.loc.gov/authorities/subjects/sh89005869 Differential equations, Hyperbolic. http://id.loc.gov/authorities/subjects/sh85037899 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Équations d'onde non linéaires. Équations différentielles hyperboliques. Théorie quantique. Géométrie différentielle. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Hyperbolic fast Geometry, Differential fast Nonlinear wave equations fast Quantum theory fast Hyperbolische Differentialgleichung gnd Nichtlineare Wellengleichung gnd http://d-nb.info/gnd/4042104-1 |
subject_GND | http://id.loc.gov/authorities/subjects/sh89005869 http://id.loc.gov/authorities/subjects/sh85037899 http://id.loc.gov/authorities/subjects/sh85109469 http://id.loc.gov/authorities/subjects/sh85054146 http://d-nb.info/gnd/4042104-1 |
title | Geometric analysis of hyperbolic differential equations : an introduction / |
title_auth | Geometric analysis of hyperbolic differential equations : an introduction / |
title_exact_search | Geometric analysis of hyperbolic differential equations : an introduction / |
title_full | Geometric analysis of hyperbolic differential equations : an introduction / S. Alinhac. |
title_fullStr | Geometric analysis of hyperbolic differential equations : an introduction / S. Alinhac. |
title_full_unstemmed | Geometric analysis of hyperbolic differential equations : an introduction / S. Alinhac. |
title_short | Geometric analysis of hyperbolic differential equations : |
title_sort | geometric analysis of hyperbolic differential equations an introduction |
title_sub | an introduction / |
topic | Nonlinear wave equations. http://id.loc.gov/authorities/subjects/sh89005869 Differential equations, Hyperbolic. http://id.loc.gov/authorities/subjects/sh85037899 Quantum theory. http://id.loc.gov/authorities/subjects/sh85109469 Geometry, Differential. http://id.loc.gov/authorities/subjects/sh85054146 Équations d'onde non linéaires. Équations différentielles hyperboliques. Théorie quantique. Géométrie différentielle. MATHEMATICS Differential Equations Partial. bisacsh Differential equations, Hyperbolic fast Geometry, Differential fast Nonlinear wave equations fast Quantum theory fast Hyperbolische Differentialgleichung gnd Nichtlineare Wellengleichung gnd http://d-nb.info/gnd/4042104-1 |
topic_facet | Nonlinear wave equations. Differential equations, Hyperbolic. Quantum theory. Geometry, Differential. Équations d'onde non linéaires. Équations différentielles hyperboliques. Théorie quantique. Géométrie différentielle. MATHEMATICS Differential Equations Partial. Differential equations, Hyperbolic Geometry, Differential Nonlinear wave equations Quantum theory Hyperbolische Differentialgleichung Nichtlineare Wellengleichung |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=399270 |
work_keys_str_mv | AT alinhacs geometricanalysisofhyperbolicdifferentialequationsanintroduction |