Density ratio estimation in machine learning /:
"Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York :
Cambridge University Press,
2012.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as nonstationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning"-- |
Beschreibung: | 1 online resource (xii, 329 pages) : illustrations |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139233255 1139233254 9781139035613 1139035614 9781280877728 1280877723 |
Internformat
MARC
LEADER | 00000cam a2200000 a 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn801405274 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cnu---unuuu | ||
008 | 120723s2012 nyua ob 001 0 eng d | ||
040 | |a N$T |b eng |e pn |c N$T |d UIU |d COO |d YDXCP |d IUL |d OCLCQ |d OCLCF |d OCLCQ |d OCLCA |d OCLCQ |d BUF |d UAB |d OCLCQ |d OCLCO |d YDX |d INARC |d OCLCL |d OCLCQ |d EZC | ||
019 | |a 798344041 |a 1034893124 |a 1330602682 | ||
020 | |a 9781139233255 |q (electronic bk.) | ||
020 | |a 1139233254 |q (electronic bk.) | ||
020 | |a 9781139035613 |q (electronic bk.) | ||
020 | |a 1139035614 |q (electronic bk.) | ||
020 | |z 9780521190176 |q (hardback) | ||
020 | |z 0521190177 |q (hardback) | ||
020 | |a 9781280877728 |q (MyiLibrary) | ||
020 | |a 1280877723 | ||
024 | 8 | |a 7109893 | |
024 | 8 | |a 9786613719034 | |
035 | |a (OCoLC)801405274 |z (OCoLC)798344041 |z (OCoLC)1034893124 |z (OCoLC)1330602682 | ||
037 | |a 371903 |b MIL | ||
050 | 4 | |a QA276.8 |b .S84 2012eb | |
072 | 7 | |a COM |x 005030 |2 bisacsh | |
072 | 7 | |a COM |x 004000 |2 bisacsh | |
082 | 7 | |a 006.3/1 |2 23 | |
084 | |a COM016000 |2 bisacsh | ||
049 | |a MAIN | ||
100 | 1 | |a Sugiyama, Masashi, |d 1974- |1 https://id.oclc.org/worldcat/entity/E39PBJgCGQdKGGMBPRGxy6RqcP |0 http://id.loc.gov/authorities/names/n2011062656 | |
245 | 1 | 0 | |a Density ratio estimation in machine learning / |c Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori. |
260 | |a New York : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource (xii, 329 pages) : |b illustrations | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Part I. Density-Ratio Approach to Machine Learning: 1. Introduction -- Part II. Methods of Density-Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction -- Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation -- Part IV. Theoretical Analysis of Density-Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis -- Part V. Conclusions: 17. Conclusions and future directions. | |
520 | |a "Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as nonstationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning"-- |c Provided by publisher. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Estimation theory. |0 http://id.loc.gov/authorities/subjects/sh85044957 | |
650 | 0 | |a Machine learning. |0 http://id.loc.gov/authorities/subjects/sh85079324 | |
650 | 6 | |a Théorie de l'estimation. | |
650 | 6 | |a Apprentissage automatique. | |
650 | 7 | |a COMPUTERS |x Computer Vision & Pattern Recognition. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Enterprise Applications |x Business Intelligence Tools. |2 bisacsh | |
650 | 7 | |a COMPUTERS |x Intelligence (AI) & Semantics. |2 bisacsh | |
650 | 7 | |a Estimation theory. |2 fast |0 (OCoLC)fst00915531 | |
650 | 7 | |a Machine learning. |2 fast |0 (OCoLC)fst01004795 | |
650 | 2 | |a Machine Learning |0 https://id.nlm.nih.gov/mesh/D000069550 | |
655 | 7 | |a dissertations. |2 aat | |
655 | 7 | |a Academic theses |2 fast | |
655 | 7 | |a Academic theses. |2 lcgft |0 http://id.loc.gov/authorities/genreForms/gf2014026039 | |
655 | 7 | |a Thèses et écrits académiques. |2 rvmgf | |
700 | 1 | |a Suzuki, Taiji, |d 1981- |1 https://id.oclc.org/worldcat/entity/E39PCjv7Mw8JtMcVR9mq9vPPcP |0 http://id.loc.gov/authorities/names/n2012006280 | |
700 | 1 | |a Kanamori, Takafumi, |d 1972- |1 https://id.oclc.org/worldcat/entity/E39PCjJ73TKQcKkHmFg4J3Y9Dq | |
758 | |i has work: |a Density ratio estimation in machine learning (Text) |1 https://id.oclc.org/worldcat/entity/E39PCGXCwBCwtdKCWQQyc4P4YK |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Sugiyama, Masashi, 1974- |t Density ratio estimation in machine learning. |d New York : Cambridge University Press, 2012 |z 9780521190176 |w (DLC) 2011051726 |w (OCoLC)757931191 |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=435286 |3 Volltext |
938 | |a EBSCOhost |b EBSC |n 435286 | ||
938 | |a YBP Library Services |b YANK |n 8923664 | ||
938 | |a YBP Library Services |b YANK |n 9003493 | ||
938 | |a YBP Library Services |b YANK |n 9445030 | ||
938 | |a Internet Archive |b INAR |n densityratioesti0000sugi | ||
938 | |a YBP Library Services |b YANK |n 7499418 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn801405274 |
---|---|
_version_ | 1816882201154813952 |
adam_text | |
any_adam_object | |
author | Sugiyama, Masashi, 1974- |
author2 | Suzuki, Taiji, 1981- Kanamori, Takafumi, 1972- |
author2_role | |
author2_variant | t s ts t k tk |
author_GND | http://id.loc.gov/authorities/names/n2011062656 http://id.loc.gov/authorities/names/n2012006280 |
author_facet | Sugiyama, Masashi, 1974- Suzuki, Taiji, 1981- Kanamori, Takafumi, 1972- |
author_role | |
author_sort | Sugiyama, Masashi, 1974- |
author_variant | m s ms |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA276 |
callnumber-raw | QA276.8 .S84 2012eb |
callnumber-search | QA276.8 .S84 2012eb |
callnumber-sort | QA 3276.8 S84 42012EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Part I. Density-Ratio Approach to Machine Learning: 1. Introduction -- Part II. Methods of Density-Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction -- Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation -- Part IV. Theoretical Analysis of Density-Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis -- Part V. Conclusions: 17. Conclusions and future directions. |
ctrlnum | (OCoLC)801405274 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05767cam a2200781 a 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn801405274</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cnu---unuuu</controlfield><controlfield tag="008">120723s2012 nyua ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">N$T</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">N$T</subfield><subfield code="d">UIU</subfield><subfield code="d">COO</subfield><subfield code="d">YDXCP</subfield><subfield code="d">IUL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCA</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BUF</subfield><subfield code="d">UAB</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">YDX</subfield><subfield code="d">INARC</subfield><subfield code="d">OCLCL</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">EZC</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">798344041</subfield><subfield code="a">1034893124</subfield><subfield code="a">1330602682</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139233255</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139233254</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139035613</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139035614</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9780521190176</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521190177</subfield><subfield code="q">(hardback)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280877728</subfield><subfield code="q">(MyiLibrary)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280877723</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">7109893</subfield></datafield><datafield tag="024" ind1="8" ind2=" "><subfield code="a">9786613719034</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)801405274</subfield><subfield code="z">(OCoLC)798344041</subfield><subfield code="z">(OCoLC)1034893124</subfield><subfield code="z">(OCoLC)1330602682</subfield></datafield><datafield tag="037" ind1=" " ind2=" "><subfield code="a">371903</subfield><subfield code="b">MIL</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA276.8</subfield><subfield code="b">.S84 2012eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">005030</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">COM</subfield><subfield code="x">004000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">006.3/1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">COM016000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sugiyama, Masashi,</subfield><subfield code="d">1974-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PBJgCGQdKGGMBPRGxy6RqcP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2011062656</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Density ratio estimation in machine learning /</subfield><subfield code="c">Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">New York :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xii, 329 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Part I. Density-Ratio Approach to Machine Learning: 1. Introduction -- Part II. Methods of Density-Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction -- Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation -- Part IV. Theoretical Analysis of Density-Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis -- Part V. Conclusions: 17. Conclusions and future directions.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as nonstationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Estimation theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85044957</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Machine learning.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de l'estimation.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Apprentissage automatique.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Computer Vision & Pattern Recognition.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Enterprise Applications</subfield><subfield code="x">Business Intelligence Tools.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="x">Intelligence (AI) & Semantics.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estimation theory.</subfield><subfield code="2">fast</subfield><subfield code="0">(OCoLC)fst00915531</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine learning.</subfield><subfield code="2">fast</subfield><subfield code="0">(OCoLC)fst01004795</subfield></datafield><datafield tag="650" ind1=" " ind2="2"><subfield code="a">Machine Learning</subfield><subfield code="0">https://id.nlm.nih.gov/mesh/D000069550</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">dissertations.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses</subfield><subfield code="2">fast</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Academic theses.</subfield><subfield code="2">lcgft</subfield><subfield code="0">http://id.loc.gov/authorities/genreForms/gf2014026039</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="a">Thèses et écrits académiques.</subfield><subfield code="2">rvmgf</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Suzuki, Taiji,</subfield><subfield code="d">1981-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjv7Mw8JtMcVR9mq9vPPcP</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2012006280</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kanamori, Takafumi,</subfield><subfield code="d">1972-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjJ73TKQcKkHmFg4J3Y9Dq</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Density ratio estimation in machine learning (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCGXCwBCwtdKCWQQyc4P4YK</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Sugiyama, Masashi, 1974-</subfield><subfield code="t">Density ratio estimation in machine learning.</subfield><subfield code="d">New York : Cambridge University Press, 2012</subfield><subfield code="z">9780521190176</subfield><subfield code="w">(DLC) 2011051726</subfield><subfield code="w">(OCoLC)757931191</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=435286</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">435286</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8923664</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9003493</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9445030</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Internet Archive</subfield><subfield code="b">INAR</subfield><subfield code="n">densityratioesti0000sugi</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7499418</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
genre | dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf |
genre_facet | dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
id | ZDB-4-EBA-ocn801405274 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:24:51Z |
institution | BVB |
isbn | 9781139233255 1139233254 9781139035613 1139035614 9781280877728 1280877723 |
language | English |
oclc_num | 801405274 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (xii, 329 pages) : illustrations |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
spelling | Sugiyama, Masashi, 1974- https://id.oclc.org/worldcat/entity/E39PBJgCGQdKGGMBPRGxy6RqcP http://id.loc.gov/authorities/names/n2011062656 Density ratio estimation in machine learning / Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori. New York : Cambridge University Press, 2012. 1 online resource (xii, 329 pages) : illustrations text txt rdacontent computer c rdamedia online resource cr rdacarrier Includes bibliographical references and index. Part I. Density-Ratio Approach to Machine Learning: 1. Introduction -- Part II. Methods of Density-Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction -- Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation -- Part IV. Theoretical Analysis of Density-Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis -- Part V. Conclusions: 17. Conclusions and future directions. "Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as nonstationarity adaptation, outlier detection, dimensionality reduction, independent component analysis, clustering, classification, and conditional density estimation can be systematically solved via the estimation of probability density ratios. The authors offer a comprehensive introduction of various density ratio estimators including methods via density estimation, moment matching, probabilistic classification, density fitting, and density ratio fitting as well as describing how these can be applied to machine learning. The book also provides mathematical theories for density ratio estimation including parametric and non-parametric convergence analysis and numerical stability analysis to complete the first and definitive treatment of the entire framework of density ratio estimation in machine learning"-- Provided by publisher. Print version record. Estimation theory. http://id.loc.gov/authorities/subjects/sh85044957 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Théorie de l'estimation. Apprentissage automatique. COMPUTERS Computer Vision & Pattern Recognition. bisacsh COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Estimation theory. fast (OCoLC)fst00915531 Machine learning. fast (OCoLC)fst01004795 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 dissertations. aat Academic theses fast Academic theses. lcgft http://id.loc.gov/authorities/genreForms/gf2014026039 Thèses et écrits académiques. rvmgf Suzuki, Taiji, 1981- https://id.oclc.org/worldcat/entity/E39PCjv7Mw8JtMcVR9mq9vPPcP http://id.loc.gov/authorities/names/n2012006280 Kanamori, Takafumi, 1972- https://id.oclc.org/worldcat/entity/E39PCjJ73TKQcKkHmFg4J3Y9Dq has work: Density ratio estimation in machine learning (Text) https://id.oclc.org/worldcat/entity/E39PCGXCwBCwtdKCWQQyc4P4YK https://id.oclc.org/worldcat/ontology/hasWork Print version: Sugiyama, Masashi, 1974- Density ratio estimation in machine learning. New York : Cambridge University Press, 2012 9780521190176 (DLC) 2011051726 (OCoLC)757931191 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=435286 Volltext |
spellingShingle | Sugiyama, Masashi, 1974- Density ratio estimation in machine learning / Part I. Density-Ratio Approach to Machine Learning: 1. Introduction -- Part II. Methods of Density-Ratio Estimation: 2. Density estimation; 3. Moment matching; 4. Probabilistic classification; 5. Density fitting; 6. Density-ratio fitting; 7. Unified framework; 8. Direct density-ratio estimation with dimensionality reduction -- Part III. Applications of Density Ratios in Machine Learning: 9. Importance sampling; 10. Distribution comparison; 11. Mutual information estimation; 12. Conditional probability estimation -- Part IV. Theoretical Analysis of Density-Ratio Estimation: 13. Parametric convergence analysis; 14. Non-parametric convergence analysis; 15. Parametric two-sample test; 16. Non-parametric numerical stability analysis -- Part V. Conclusions: 17. Conclusions and future directions. Estimation theory. http://id.loc.gov/authorities/subjects/sh85044957 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Théorie de l'estimation. Apprentissage automatique. COMPUTERS Computer Vision & Pattern Recognition. bisacsh COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Estimation theory. fast (OCoLC)fst00915531 Machine learning. fast (OCoLC)fst01004795 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 |
subject_GND | http://id.loc.gov/authorities/subjects/sh85044957 http://id.loc.gov/authorities/subjects/sh85079324 (OCoLC)fst00915531 (OCoLC)fst01004795 https://id.nlm.nih.gov/mesh/D000069550 http://id.loc.gov/authorities/genreForms/gf2014026039 |
title | Density ratio estimation in machine learning / |
title_auth | Density ratio estimation in machine learning / |
title_exact_search | Density ratio estimation in machine learning / |
title_full | Density ratio estimation in machine learning / Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori. |
title_fullStr | Density ratio estimation in machine learning / Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori. |
title_full_unstemmed | Density ratio estimation in machine learning / Masashi Sugiyama, Taiji Suzuki, Takafumi Kanamori. |
title_short | Density ratio estimation in machine learning / |
title_sort | density ratio estimation in machine learning |
topic | Estimation theory. http://id.loc.gov/authorities/subjects/sh85044957 Machine learning. http://id.loc.gov/authorities/subjects/sh85079324 Théorie de l'estimation. Apprentissage automatique. COMPUTERS Computer Vision & Pattern Recognition. bisacsh COMPUTERS Enterprise Applications Business Intelligence Tools. bisacsh COMPUTERS Intelligence (AI) & Semantics. bisacsh Estimation theory. fast (OCoLC)fst00915531 Machine learning. fast (OCoLC)fst01004795 Machine Learning https://id.nlm.nih.gov/mesh/D000069550 |
topic_facet | Estimation theory. Machine learning. Théorie de l'estimation. Apprentissage automatique. COMPUTERS Computer Vision & Pattern Recognition. COMPUTERS Enterprise Applications Business Intelligence Tools. COMPUTERS Intelligence (AI) & Semantics. Machine Learning dissertations. Academic theses Academic theses. Thèses et écrits académiques. |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=435286 |
work_keys_str_mv | AT sugiyamamasashi densityratioestimationinmachinelearning AT suzukitaiji densityratioestimationinmachinelearning AT kanamoritakafumi densityratioestimationinmachinelearning |