Normal Approximations with Malliavin Calculus :: From Stein's Method to Universality.
Shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge :
Cambridge University Press,
2012.
|
Schriftenreihe: | Cambridge Tracts in Mathematics, 192.
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus. |
Beschreibung: | 11.6 Exercises. |
Beschreibung: | 1 online resource (256 pages) |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781139377355 1139377353 9781139084659 1139084658 9781139380218 1139380214 9781139375924 113937592X |
Internformat
MARC
LEADER | 00000cam a2200000 i 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn797919775 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr |n||||||||| | ||
008 | 121122s2012 enk ob 001 0 eng d | ||
040 | |a EBLCP |b eng |e pn |c EBLCP |d CDX |d OCLCO |d DEBSZ |d OL$ |d OCLCO |d OCLCQ |d OCLCF |d YDXCP |d N$T |d E7B |d CAMBR |d OCLCQ |d BUF |d UAB |d UUM |d OCLCQ |d COCUF |d STF |d LOA |d CUY |d MERUC |d ZCU |d ICG |d INT |d K6U |d VT2 |d U3W |d OCLCQ |d WYU |d LVT |d TKN |d OCLCQ |d DKC |d OCLCQ |d G3B |d OCLCQ |d UKAHL |d AJS |d OCLCO |d OCLCQ |d S9M |d OCLCL | ||
019 | |a 798613266 |a 801405260 |a 817925361 |a 853659692 | ||
020 | |a 9781139377355 | ||
020 | |a 1139377353 | ||
020 | |a 9781139084659 |q (electronic book) | ||
020 | |a 1139084658 |q (electronic book) | ||
020 | |a 9781139380218 |q (electronic bk.) | ||
020 | |a 1139380214 |q (electronic bk.) | ||
020 | |a 9781139375924 | ||
020 | |a 113937592X | ||
020 | |z 9781107017771 | ||
020 | |z 1107017777 | ||
035 | |a (OCoLC)797919775 |z (OCoLC)798613266 |z (OCoLC)801405260 |z (OCoLC)817925361 |z (OCoLC)853659692 | ||
050 | 4 | |a QA221 .N68 2012 | |
072 | 7 | |a MAT |x 029040 |2 bisacsh | |
082 | 7 | |a 519.2/3 |a 519.23 | |
084 | |a MAT029000 |2 bisacsh | ||
049 | |a MAIN | ||
100 | 1 | |a Nourdin, Ivan. | |
245 | 1 | 0 | |a Normal Approximations with Malliavin Calculus : |b From Stein's Method to Universality. |
260 | |a Cambridge : |b Cambridge University Press, |c 2012. | ||
300 | |a 1 online resource (256 pages) | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a Cambridge Tracts in Mathematics, 192 ; |v v. 192 | |
588 | 0 | |a Print version record. | |
505 | 0 | |a Cover; CAMBRIDGE TRACTS IN MATHEMATICS: GENERAL EDITORS; Title; Copyright; Dedication; Contents; Preface; Introduction; 1 Malliavin operators in the one-dimensional case; 1.1 Derivative operators; 1.2 Divergences; 1.3 Ornstein-Uhlenbeck operators; 1.4 First application: Hermite polynomials; 1.5 Second application: variance expansions; 1.6 Third application: second-order Poincaré inequalities; 1.7 Exercises; 1.8 Bibliographic comments; 2 Malliavin operators and isonormal Gaussian processes; 2.1 Isonormal Gaussian processes; 2.2 Wiener chaos; 2.3 The derivative operator. | |
505 | 8 | |a 2.4 The Malliavin derivatives in Hilbert spaces2.5 The divergence operator; 2.6 Some Hilbert space valued divergences; 2.7 Multiple integrals; 2.8 The Ornstein-Uhlenbeck semigroup; 2.9 An integration by parts formula; 2.10 Absolute continuity of the laws of multiple integrals; 2.11 Exercises; 2.12 Bibliographic comments; 3 Stein's method for one-dimensional normal approximations; 3.1 Gaussian moments and Stein's lemma; 3.2 Stein's equations; 3.3 Stein's bounds for the total variation distance; 3.4 Stein's bounds for the Kolmogorov distance; 3.5 Stein's bounds for the Wasserstein distance. | |
505 | 8 | |a 3.6 A simple example3.7 The Berry-Esseen theorem; 3.8 Exercises; 3.9 Bibliographic comments; 4 Multidimensional Stein's method; 4.1 Multidimensional Stein's lemmas; 4.2 Stein's equations for identity matrices; 4.3 Stein's equations for general positive definite matrices; 4.4 Bounds on the Wasserstein distance; 4.5 Exercises; 4.6 Bibliographic comments; 5 Stein meets Malliavin: univariate normal approximations; 5.1 Bounds for general functionals; 5.2 Normal approximations on Wiener chaos; 5.2.1 Some preliminary considerations; 5.3 Normal approximations in the general case; 5.3.1 Main results. | |
505 | 8 | |a 5.4 Exercises5.5 Bibliographic comments; 6 Multivariate normal approximations; 6.1 Bounds for general vectors; 6.2 The case of Wiener chaos; 6.3 CLTs via chaos decompositions; 6.4 Exercises; 6.5 Bibliographic comments; 7 Exploring the Breuer-Major theorem; 7.1 Motivation; 7.2 A general statement; 7.3 Quadratic case; 7.4 The increments of a fractional Brownian motion; 7.5 Exercises; 7.6 Bibliographic comments; 8 Computation of cumulants; 8.1 Decomposing multi-indices; 8.2 General formulae; 8.3 Application to multiple integrals; 8.4 Formulae in dimension one; 8.5 Exercises. | |
505 | 8 | |a 8.6 Bibliographic comments9 Exact asymptotics and optimal rates; 9.1 Some technical computations; 9.2 A general result; 9.3 Connections with Edgeworth expansions; 9.4 Double integrals; 9.5 Further examples; 9.6 Exercises; 9.7 Bibliographic comments; 10 Density estimates; 10.1 General results; 10.2 Explicit computations; 10.3 An example; 10.4 Exercises; 10.5 Bibliographic comments; 11 Homogeneous sums and universality; 11.1 The Lindeberg method; 11.2 Homogeneous sums and influence functions; 11.3 The universality result; 11.4 Some technical estimates; 11.5 Proof of Theorem 11.3.1. | |
500 | |a 11.6 Exercises. | ||
520 | |a Shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus. | ||
504 | |a Includes bibliographical references and index. | ||
650 | 0 | |a Approximation theory. |0 http://id.loc.gov/authorities/subjects/sh85006190 | |
650 | 0 | |a Malliavin calculus. |0 http://id.loc.gov/authorities/subjects/sh91004306 | |
650 | 6 | |a Théorie de l'approximation. | |
650 | 6 | |a Calcul de Malliavin. | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x General. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Probability & Statistics |x Stochastic Processes. |2 bisacsh | |
650 | 0 | 7 | |a Aproximación, Teoría de |2 embucm |
650 | 7 | |a Approximation theory |2 fast | |
650 | 7 | |a Malliavin calculus |2 fast | |
700 | 1 | |a Peccati, Giovanni, |d 1975- |1 https://id.oclc.org/worldcat/entity/E39PCjHW3xR6VdxggCgh4BRBT3 |0 http://id.loc.gov/authorities/names/n2011037471 | |
758 | |i has work: |a Normal approximations with Malliavin calculus (Text) |1 https://id.oclc.org/worldcat/entity/E39PCG3RkMDtRqjXjvR8WFHq6X |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | 8 | |i Print version: |a Nourdin, Ivan. |t Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. |d Cambridge : Cambridge University Press, ©2012 |z 9781107017771 |
830 | 0 | |a Cambridge Tracts in Mathematics, 192. | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443707 |3 Volltext |
936 | |a BATCHLOAD | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH22951523 | ||
938 | |a Askews and Holts Library Services |b ASKH |n AH28321248 | ||
938 | |a Coutts Information Services |b COUT |n 22835449 |c 50.00 GBP | ||
938 | |a EBL - Ebook Library |b EBLB |n EBL880643 | ||
938 | |a ebrary |b EBRY |n ebr10574349 | ||
938 | |a EBSCOhost |b EBSC |n 443707 | ||
938 | |a YBP Library Services |b YANK |n 8923704 | ||
938 | |a YBP Library Services |b YANK |n 8465721 | ||
938 | |a YBP Library Services |b YANK |n 9003533 | ||
938 | |a YBP Library Services |b YANK |n 9445067 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn797919775 |
---|---|
_version_ | 1816882199566221312 |
adam_text | |
any_adam_object | |
author | Nourdin, Ivan |
author2 | Peccati, Giovanni, 1975- |
author2_role | |
author2_variant | g p gp |
author_GND | http://id.loc.gov/authorities/names/n2011037471 |
author_facet | Nourdin, Ivan Peccati, Giovanni, 1975- |
author_role | |
author_sort | Nourdin, Ivan |
author_variant | i n in |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA221 |
callnumber-raw | QA221 .N68 2012 |
callnumber-search | QA221 .N68 2012 |
callnumber-sort | QA 3221 N68 42012 |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | Cover; CAMBRIDGE TRACTS IN MATHEMATICS: GENERAL EDITORS; Title; Copyright; Dedication; Contents; Preface; Introduction; 1 Malliavin operators in the one-dimensional case; 1.1 Derivative operators; 1.2 Divergences; 1.3 Ornstein-Uhlenbeck operators; 1.4 First application: Hermite polynomials; 1.5 Second application: variance expansions; 1.6 Third application: second-order Poincaré inequalities; 1.7 Exercises; 1.8 Bibliographic comments; 2 Malliavin operators and isonormal Gaussian processes; 2.1 Isonormal Gaussian processes; 2.2 Wiener chaos; 2.3 The derivative operator. 2.4 The Malliavin derivatives in Hilbert spaces2.5 The divergence operator; 2.6 Some Hilbert space valued divergences; 2.7 Multiple integrals; 2.8 The Ornstein-Uhlenbeck semigroup; 2.9 An integration by parts formula; 2.10 Absolute continuity of the laws of multiple integrals; 2.11 Exercises; 2.12 Bibliographic comments; 3 Stein's method for one-dimensional normal approximations; 3.1 Gaussian moments and Stein's lemma; 3.2 Stein's equations; 3.3 Stein's bounds for the total variation distance; 3.4 Stein's bounds for the Kolmogorov distance; 3.5 Stein's bounds for the Wasserstein distance. 3.6 A simple example3.7 The Berry-Esseen theorem; 3.8 Exercises; 3.9 Bibliographic comments; 4 Multidimensional Stein's method; 4.1 Multidimensional Stein's lemmas; 4.2 Stein's equations for identity matrices; 4.3 Stein's equations for general positive definite matrices; 4.4 Bounds on the Wasserstein distance; 4.5 Exercises; 4.6 Bibliographic comments; 5 Stein meets Malliavin: univariate normal approximations; 5.1 Bounds for general functionals; 5.2 Normal approximations on Wiener chaos; 5.2.1 Some preliminary considerations; 5.3 Normal approximations in the general case; 5.3.1 Main results. 5.4 Exercises5.5 Bibliographic comments; 6 Multivariate normal approximations; 6.1 Bounds for general vectors; 6.2 The case of Wiener chaos; 6.3 CLTs via chaos decompositions; 6.4 Exercises; 6.5 Bibliographic comments; 7 Exploring the Breuer-Major theorem; 7.1 Motivation; 7.2 A general statement; 7.3 Quadratic case; 7.4 The increments of a fractional Brownian motion; 7.5 Exercises; 7.6 Bibliographic comments; 8 Computation of cumulants; 8.1 Decomposing multi-indices; 8.2 General formulae; 8.3 Application to multiple integrals; 8.4 Formulae in dimension one; 8.5 Exercises. 8.6 Bibliographic comments9 Exact asymptotics and optimal rates; 9.1 Some technical computations; 9.2 A general result; 9.3 Connections with Edgeworth expansions; 9.4 Double integrals; 9.5 Further examples; 9.6 Exercises; 9.7 Bibliographic comments; 10 Density estimates; 10.1 General results; 10.2 Explicit computations; 10.3 An example; 10.4 Exercises; 10.5 Bibliographic comments; 11 Homogeneous sums and universality; 11.1 The Lindeberg method; 11.2 Homogeneous sums and influence functions; 11.3 The universality result; 11.4 Some technical estimates; 11.5 Proof of Theorem 11.3.1. |
ctrlnum | (OCoLC)797919775 |
dewey-full | 519.2/3 519.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2/3 519.23 |
dewey-search | 519.2/3 519.23 |
dewey-sort | 3519.2 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06775cam a2200829 i 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn797919775</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |n|||||||||</controlfield><controlfield tag="008">121122s2012 enk ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">EBLCP</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">EBLCP</subfield><subfield code="d">CDX</subfield><subfield code="d">OCLCO</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OL$</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">YDXCP</subfield><subfield code="d">N$T</subfield><subfield code="d">E7B</subfield><subfield code="d">CAMBR</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">BUF</subfield><subfield code="d">UAB</subfield><subfield code="d">UUM</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COCUF</subfield><subfield code="d">STF</subfield><subfield code="d">LOA</subfield><subfield code="d">CUY</subfield><subfield code="d">MERUC</subfield><subfield code="d">ZCU</subfield><subfield code="d">ICG</subfield><subfield code="d">INT</subfield><subfield code="d">K6U</subfield><subfield code="d">VT2</subfield><subfield code="d">U3W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">LVT</subfield><subfield code="d">TKN</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DKC</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">G3B</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">S9M</subfield><subfield code="d">OCLCL</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">798613266</subfield><subfield code="a">801405260</subfield><subfield code="a">817925361</subfield><subfield code="a">853659692</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139377355</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139377353</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139084659</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139084658</subfield><subfield code="q">(electronic book)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139380218</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1139380214</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781139375924</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">113937592X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781107017771</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1107017777</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)797919775</subfield><subfield code="z">(OCoLC)798613266</subfield><subfield code="z">(OCoLC)801405260</subfield><subfield code="z">(OCoLC)817925361</subfield><subfield code="z">(OCoLC)853659692</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA221 .N68 2012</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">029040</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">519.2/3</subfield><subfield code="a">519.23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT029000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nourdin, Ivan.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Normal Approximations with Malliavin Calculus :</subfield><subfield code="b">From Stein's Method to Universality.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (256 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Cambridge Tracts in Mathematics, 192 ;</subfield><subfield code="v">v. 192</subfield></datafield><datafield tag="588" ind1="0" ind2=" "><subfield code="a">Print version record.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover; CAMBRIDGE TRACTS IN MATHEMATICS: GENERAL EDITORS; Title; Copyright; Dedication; Contents; Preface; Introduction; 1 Malliavin operators in the one-dimensional case; 1.1 Derivative operators; 1.2 Divergences; 1.3 Ornstein-Uhlenbeck operators; 1.4 First application: Hermite polynomials; 1.5 Second application: variance expansions; 1.6 Third application: second-order Poincaré inequalities; 1.7 Exercises; 1.8 Bibliographic comments; 2 Malliavin operators and isonormal Gaussian processes; 2.1 Isonormal Gaussian processes; 2.2 Wiener chaos; 2.3 The derivative operator.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.4 The Malliavin derivatives in Hilbert spaces2.5 The divergence operator; 2.6 Some Hilbert space valued divergences; 2.7 Multiple integrals; 2.8 The Ornstein-Uhlenbeck semigroup; 2.9 An integration by parts formula; 2.10 Absolute continuity of the laws of multiple integrals; 2.11 Exercises; 2.12 Bibliographic comments; 3 Stein's method for one-dimensional normal approximations; 3.1 Gaussian moments and Stein's lemma; 3.2 Stein's equations; 3.3 Stein's bounds for the total variation distance; 3.4 Stein's bounds for the Kolmogorov distance; 3.5 Stein's bounds for the Wasserstein distance.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.6 A simple example3.7 The Berry-Esseen theorem; 3.8 Exercises; 3.9 Bibliographic comments; 4 Multidimensional Stein's method; 4.1 Multidimensional Stein's lemmas; 4.2 Stein's equations for identity matrices; 4.3 Stein's equations for general positive definite matrices; 4.4 Bounds on the Wasserstein distance; 4.5 Exercises; 4.6 Bibliographic comments; 5 Stein meets Malliavin: univariate normal approximations; 5.1 Bounds for general functionals; 5.2 Normal approximations on Wiener chaos; 5.2.1 Some preliminary considerations; 5.3 Normal approximations in the general case; 5.3.1 Main results.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 Exercises5.5 Bibliographic comments; 6 Multivariate normal approximations; 6.1 Bounds for general vectors; 6.2 The case of Wiener chaos; 6.3 CLTs via chaos decompositions; 6.4 Exercises; 6.5 Bibliographic comments; 7 Exploring the Breuer-Major theorem; 7.1 Motivation; 7.2 A general statement; 7.3 Quadratic case; 7.4 The increments of a fractional Brownian motion; 7.5 Exercises; 7.6 Bibliographic comments; 8 Computation of cumulants; 8.1 Decomposing multi-indices; 8.2 General formulae; 8.3 Application to multiple integrals; 8.4 Formulae in dimension one; 8.5 Exercises.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.6 Bibliographic comments9 Exact asymptotics and optimal rates; 9.1 Some technical computations; 9.2 A general result; 9.3 Connections with Edgeworth expansions; 9.4 Double integrals; 9.5 Further examples; 9.6 Exercises; 9.7 Bibliographic comments; 10 Density estimates; 10.1 General results; 10.2 Explicit computations; 10.3 An example; 10.4 Exercises; 10.5 Bibliographic comments; 11 Homogeneous sums and universality; 11.1 The Lindeberg method; 11.2 Homogeneous sums and influence functions; 11.3 The universality result; 11.4 Some technical estimates; 11.5 Proof of Theorem 11.3.1.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">11.6 Exercises.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Approximation theory.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85006190</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Malliavin calculus.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh91004306</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Théorie de l'approximation.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Calcul de Malliavin.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">General.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Probability & Statistics</subfield><subfield code="x">Stochastic Processes.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aproximación, Teoría de</subfield><subfield code="2">embucm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Approximation theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Malliavin calculus</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peccati, Giovanni,</subfield><subfield code="d">1975-</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCjHW3xR6VdxggCgh4BRBT3</subfield><subfield code="0">http://id.loc.gov/authorities/names/n2011037471</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Normal approximations with Malliavin calculus (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCG3RkMDtRqjXjvR8WFHq6X</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Nourdin, Ivan.</subfield><subfield code="t">Normal Approximations with Malliavin Calculus : From Stein's Method to Universality.</subfield><subfield code="d">Cambridge : Cambridge University Press, ©2012</subfield><subfield code="z">9781107017771</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Cambridge Tracts in Mathematics, 192.</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443707</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="936" ind1=" " ind2=" "><subfield code="a">BATCHLOAD</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH22951523</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH28321248</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">22835449</subfield><subfield code="c">50.00 GBP</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBL - Ebook Library</subfield><subfield code="b">EBLB</subfield><subfield code="n">EBL880643</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10574349</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">443707</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8923704</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">8465721</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9003533</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">9445067</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn797919775 |
illustrated | Not Illustrated |
indexdate | 2024-11-27T13:24:49Z |
institution | BVB |
isbn | 9781139377355 1139377353 9781139084659 1139084658 9781139380218 1139380214 9781139375924 113937592X |
language | English |
oclc_num | 797919775 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (256 pages) |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Cambridge University Press, |
record_format | marc |
series | Cambridge Tracts in Mathematics, 192. |
series2 | Cambridge Tracts in Mathematics, 192 ; |
spelling | Nourdin, Ivan. Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. Cambridge : Cambridge University Press, 2012. 1 online resource (256 pages) text txt rdacontent computer c rdamedia online resource cr rdacarrier Cambridge Tracts in Mathematics, 192 ; v. 192 Print version record. Cover; CAMBRIDGE TRACTS IN MATHEMATICS: GENERAL EDITORS; Title; Copyright; Dedication; Contents; Preface; Introduction; 1 Malliavin operators in the one-dimensional case; 1.1 Derivative operators; 1.2 Divergences; 1.3 Ornstein-Uhlenbeck operators; 1.4 First application: Hermite polynomials; 1.5 Second application: variance expansions; 1.6 Third application: second-order Poincaré inequalities; 1.7 Exercises; 1.8 Bibliographic comments; 2 Malliavin operators and isonormal Gaussian processes; 2.1 Isonormal Gaussian processes; 2.2 Wiener chaos; 2.3 The derivative operator. 2.4 The Malliavin derivatives in Hilbert spaces2.5 The divergence operator; 2.6 Some Hilbert space valued divergences; 2.7 Multiple integrals; 2.8 The Ornstein-Uhlenbeck semigroup; 2.9 An integration by parts formula; 2.10 Absolute continuity of the laws of multiple integrals; 2.11 Exercises; 2.12 Bibliographic comments; 3 Stein's method for one-dimensional normal approximations; 3.1 Gaussian moments and Stein's lemma; 3.2 Stein's equations; 3.3 Stein's bounds for the total variation distance; 3.4 Stein's bounds for the Kolmogorov distance; 3.5 Stein's bounds for the Wasserstein distance. 3.6 A simple example3.7 The Berry-Esseen theorem; 3.8 Exercises; 3.9 Bibliographic comments; 4 Multidimensional Stein's method; 4.1 Multidimensional Stein's lemmas; 4.2 Stein's equations for identity matrices; 4.3 Stein's equations for general positive definite matrices; 4.4 Bounds on the Wasserstein distance; 4.5 Exercises; 4.6 Bibliographic comments; 5 Stein meets Malliavin: univariate normal approximations; 5.1 Bounds for general functionals; 5.2 Normal approximations on Wiener chaos; 5.2.1 Some preliminary considerations; 5.3 Normal approximations in the general case; 5.3.1 Main results. 5.4 Exercises5.5 Bibliographic comments; 6 Multivariate normal approximations; 6.1 Bounds for general vectors; 6.2 The case of Wiener chaos; 6.3 CLTs via chaos decompositions; 6.4 Exercises; 6.5 Bibliographic comments; 7 Exploring the Breuer-Major theorem; 7.1 Motivation; 7.2 A general statement; 7.3 Quadratic case; 7.4 The increments of a fractional Brownian motion; 7.5 Exercises; 7.6 Bibliographic comments; 8 Computation of cumulants; 8.1 Decomposing multi-indices; 8.2 General formulae; 8.3 Application to multiple integrals; 8.4 Formulae in dimension one; 8.5 Exercises. 8.6 Bibliographic comments9 Exact asymptotics and optimal rates; 9.1 Some technical computations; 9.2 A general result; 9.3 Connections with Edgeworth expansions; 9.4 Double integrals; 9.5 Further examples; 9.6 Exercises; 9.7 Bibliographic comments; 10 Density estimates; 10.1 General results; 10.2 Explicit computations; 10.3 An example; 10.4 Exercises; 10.5 Bibliographic comments; 11 Homogeneous sums and universality; 11.1 The Lindeberg method; 11.2 Homogeneous sums and influence functions; 11.3 The universality result; 11.4 Some technical estimates; 11.5 Proof of Theorem 11.3.1. 11.6 Exercises. Shows how quantitative central limit theorems can be deduced by combining two powerful probabilistic techniques: Stein's method and Malliavin calculus. Includes bibliographical references and index. Approximation theory. http://id.loc.gov/authorities/subjects/sh85006190 Malliavin calculus. http://id.loc.gov/authorities/subjects/sh91004306 Théorie de l'approximation. Calcul de Malliavin. MATHEMATICS Probability & Statistics General. bisacsh MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Aproximación, Teoría de embucm Approximation theory fast Malliavin calculus fast Peccati, Giovanni, 1975- https://id.oclc.org/worldcat/entity/E39PCjHW3xR6VdxggCgh4BRBT3 http://id.loc.gov/authorities/names/n2011037471 has work: Normal approximations with Malliavin calculus (Text) https://id.oclc.org/worldcat/entity/E39PCG3RkMDtRqjXjvR8WFHq6X https://id.oclc.org/worldcat/ontology/hasWork Print version: Nourdin, Ivan. Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. Cambridge : Cambridge University Press, ©2012 9781107017771 Cambridge Tracts in Mathematics, 192. FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443707 Volltext |
spellingShingle | Nourdin, Ivan Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. Cambridge Tracts in Mathematics, 192. Cover; CAMBRIDGE TRACTS IN MATHEMATICS: GENERAL EDITORS; Title; Copyright; Dedication; Contents; Preface; Introduction; 1 Malliavin operators in the one-dimensional case; 1.1 Derivative operators; 1.2 Divergences; 1.3 Ornstein-Uhlenbeck operators; 1.4 First application: Hermite polynomials; 1.5 Second application: variance expansions; 1.6 Third application: second-order Poincaré inequalities; 1.7 Exercises; 1.8 Bibliographic comments; 2 Malliavin operators and isonormal Gaussian processes; 2.1 Isonormal Gaussian processes; 2.2 Wiener chaos; 2.3 The derivative operator. 2.4 The Malliavin derivatives in Hilbert spaces2.5 The divergence operator; 2.6 Some Hilbert space valued divergences; 2.7 Multiple integrals; 2.8 The Ornstein-Uhlenbeck semigroup; 2.9 An integration by parts formula; 2.10 Absolute continuity of the laws of multiple integrals; 2.11 Exercises; 2.12 Bibliographic comments; 3 Stein's method for one-dimensional normal approximations; 3.1 Gaussian moments and Stein's lemma; 3.2 Stein's equations; 3.3 Stein's bounds for the total variation distance; 3.4 Stein's bounds for the Kolmogorov distance; 3.5 Stein's bounds for the Wasserstein distance. 3.6 A simple example3.7 The Berry-Esseen theorem; 3.8 Exercises; 3.9 Bibliographic comments; 4 Multidimensional Stein's method; 4.1 Multidimensional Stein's lemmas; 4.2 Stein's equations for identity matrices; 4.3 Stein's equations for general positive definite matrices; 4.4 Bounds on the Wasserstein distance; 4.5 Exercises; 4.6 Bibliographic comments; 5 Stein meets Malliavin: univariate normal approximations; 5.1 Bounds for general functionals; 5.2 Normal approximations on Wiener chaos; 5.2.1 Some preliminary considerations; 5.3 Normal approximations in the general case; 5.3.1 Main results. 5.4 Exercises5.5 Bibliographic comments; 6 Multivariate normal approximations; 6.1 Bounds for general vectors; 6.2 The case of Wiener chaos; 6.3 CLTs via chaos decompositions; 6.4 Exercises; 6.5 Bibliographic comments; 7 Exploring the Breuer-Major theorem; 7.1 Motivation; 7.2 A general statement; 7.3 Quadratic case; 7.4 The increments of a fractional Brownian motion; 7.5 Exercises; 7.6 Bibliographic comments; 8 Computation of cumulants; 8.1 Decomposing multi-indices; 8.2 General formulae; 8.3 Application to multiple integrals; 8.4 Formulae in dimension one; 8.5 Exercises. 8.6 Bibliographic comments9 Exact asymptotics and optimal rates; 9.1 Some technical computations; 9.2 A general result; 9.3 Connections with Edgeworth expansions; 9.4 Double integrals; 9.5 Further examples; 9.6 Exercises; 9.7 Bibliographic comments; 10 Density estimates; 10.1 General results; 10.2 Explicit computations; 10.3 An example; 10.4 Exercises; 10.5 Bibliographic comments; 11 Homogeneous sums and universality; 11.1 The Lindeberg method; 11.2 Homogeneous sums and influence functions; 11.3 The universality result; 11.4 Some technical estimates; 11.5 Proof of Theorem 11.3.1. Approximation theory. http://id.loc.gov/authorities/subjects/sh85006190 Malliavin calculus. http://id.loc.gov/authorities/subjects/sh91004306 Théorie de l'approximation. Calcul de Malliavin. MATHEMATICS Probability & Statistics General. bisacsh MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Aproximación, Teoría de embucm Approximation theory fast Malliavin calculus fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85006190 http://id.loc.gov/authorities/subjects/sh91004306 |
title | Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. |
title_auth | Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. |
title_exact_search | Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. |
title_full | Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. |
title_fullStr | Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. |
title_full_unstemmed | Normal Approximations with Malliavin Calculus : From Stein's Method to Universality. |
title_short | Normal Approximations with Malliavin Calculus : |
title_sort | normal approximations with malliavin calculus from stein s method to universality |
title_sub | From Stein's Method to Universality. |
topic | Approximation theory. http://id.loc.gov/authorities/subjects/sh85006190 Malliavin calculus. http://id.loc.gov/authorities/subjects/sh91004306 Théorie de l'approximation. Calcul de Malliavin. MATHEMATICS Probability & Statistics General. bisacsh MATHEMATICS Probability & Statistics Stochastic Processes. bisacsh Aproximación, Teoría de embucm Approximation theory fast Malliavin calculus fast |
topic_facet | Approximation theory. Malliavin calculus. Théorie de l'approximation. Calcul de Malliavin. MATHEMATICS Probability & Statistics General. MATHEMATICS Probability & Statistics Stochastic Processes. Aproximación, Teoría de Approximation theory Malliavin calculus |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=443707 |
work_keys_str_mv | AT nourdinivan normalapproximationswithmalliavincalculusfromsteinsmethodtouniversality AT peccatigiovanni normalapproximationswithmalliavincalculusfromsteinsmethodtouniversality |