Geometric realizations of curvature /:
A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are re...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London :
Imperial College Press,
2012.
|
Schriftenreihe: | Imperial College Press advanced texts in mathematics ;
v. 6. |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be phrased as problems involving the geometric realization of curvature. Curvature decompositions are central to all investigations in this area. The authors present numerous results including the Singer-Thorpe decomposition, the Bokan decomposition, the Nikcevic decomposition, the Tricerri-Vanhecke decomposition, the Gray-Hervella decomposition and the De Smedt decomposition. They then proceed to draw appropriate geometric conclusions from these decompositions. The book organizes, in one coherent volume, the results of research completed by many different investigators over the past 30 years. Complete proofs are given of results that are often only outlined in the original publications. Whereas the original results are usually in the positive definite (Riemannian setting), here the authors extend the results to the pseudo-Riemannian setting and then further, in a complex framework, to para-Hermitian geometry as well. In addition to that, new results are obtained as well, making this an ideal text for anyone wishing to further their knowledge of the science of curvature. |
Beschreibung: | 1 online resource (ix, 252 pages) : illustrations. |
Bibliographie: | Includes bibliographical references and index. |
ISBN: | 9781848167421 1848167423 1280668997 9781280668999 9786613645920 6613645923 |
ISSN: | 1753-657X ; |
Internformat
MARC
LEADER | 00000cam a2200000Ma 4500 | ||
---|---|---|---|
001 | ZDB-4-EBA-ocn797852271 | ||
003 | OCoLC | ||
005 | 20241004212047.0 | ||
006 | m o d | ||
007 | cr cn||||||||| | ||
008 | 120608s2012 enka ob 001 0 eng d | ||
040 | |a E7B |b eng |e pn |c E7B |d OCLCO |d N$T |d YDXCP |d I9W |d OCLCQ |d DEBSZ |d OCLCQ |d CDX |d DEBBG |d OCLCQ |d OCLCF |d OCLCQ |d LOA |d COCUF |d AGLDB |d MOR |d OTZ |d OCLCQ |d COO |d U3W |d STF |d WRM |d VTS |d NRAMU |d CRU |d OCLCQ |d INT |d VT2 |d OCLCQ |d WYU |d OCLCQ |d UKAHL |d UKCRE |d VLY |d AJS |d OCLCO |d OCLCQ |d OCLCO |d OCLCL |d SXB |d OCLCQ | ||
019 | |a 961613745 |a 962704583 |a 974662452 |a 974770543 |a 1016435380 |a 1018041967 |a 1043593298 |a 1064134354 |a 1065000281 |a 1086534322 |a 1153469487 |a 1162537187 |a 1241799600 |a 1290038274 |a 1300662933 | ||
020 | |a 9781848167421 |q (electronic bk.) | ||
020 | |a 1848167423 |q (electronic bk.) | ||
020 | |z 1848167415 | ||
020 | |z 9781848167414 | ||
020 | |a 1280668997 | ||
020 | |a 9781280668999 | ||
020 | |a 9786613645920 | ||
020 | |a 6613645923 | ||
035 | |a (OCoLC)797852271 |z (OCoLC)961613745 |z (OCoLC)962704583 |z (OCoLC)974662452 |z (OCoLC)974770543 |z (OCoLC)1016435380 |z (OCoLC)1018041967 |z (OCoLC)1043593298 |z (OCoLC)1064134354 |z (OCoLC)1065000281 |z (OCoLC)1086534322 |z (OCoLC)1153469487 |z (OCoLC)1162537187 |z (OCoLC)1241799600 |z (OCoLC)1290038274 |z (OCoLC)1300662933 | ||
050 | 4 | |a QA645 |b .V39 2012eb | |
072 | 7 | |a MAT |x 005000 |2 bisacsh | |
072 | 7 | |a MAT |x 034000 |2 bisacsh | |
082 | 7 | |a 515/.1 |2 23 | |
049 | |a MAIN | ||
100 | 1 | |a Brozos-Vázquez, Miguel. | |
245 | 1 | 0 | |a Geometric realizations of curvature / |c Miguel Brozos Vázquez, Peter B. Gilkey, Stana Nikcevic. |
260 | |a London : |b Imperial College Press, |c 2012. | ||
300 | |a 1 online resource (ix, 252 pages) : |b illustrations. | ||
336 | |a text |b txt |2 rdacontent | ||
337 | |a computer |b c |2 rdamedia | ||
338 | |a online resource |b cr |2 rdacarrier | ||
490 | 1 | |a ICP advanced texts in mathematics, |x 1753-657X ; |v v. 6 | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a 1. Introduction and statement of results. 1.1. Notational conventions. 1.2. Representation theory. 1.3. Affine structures. 1.4. Mixed structures. 1.5. Affine Kahler structures. 1.6. Riemannian structures. 1.7. Weyl geometry I. 1.8. Almost pseudo-hermitian geometry. 1.9. The Gray identity. 1.10. Kahler geometry in the Riemannian setting I. 1.11. Curvature Kahler-Weyl geometry. 1.12. The covariant derivative of the Kahler form I. 1.13. Hyper-hermitian geometry -- 2. Representation theory. 2.1. Modules for a group G. 2.2. Quadratic invariants. 2.3. Weyl's theory of invariants. 2.4. Some orthogonal modules. 2.5. Some unitary modules. 2.6. Compact Lie groups -- 3. Connections, curvature, and differential geometry. 3.1. Affine connections. 3.2. Equiaffine connections. 3.3. The Levi-Civita connection. 3.4. Complex geometry. 3.5. The Gray identity. 3.6. Kahler geometry in the Riemannian setting II -- 4. Real affine geometry. 4.1. Decomposition of [symbol] and [symbol] as orthogonal modules. 4.2. The modules [symbol], S[symbol] and [symbol] in [symbol]. 4.3. The modules W[symbol], W[symbol] and W[symbol] in [symbol]. 4.4. Decomposition of [symbol] as a general linear module. 4.5. Geometric realizability of affine curvature operators. 4.6. Decomposition of [symbol] as an orthogonal module -- 5. Affine Kahler geometry. 5.1. Affine Kahler curvature tensor quadratic invariants. 5.2. The Ricci tensor for a Kahler affine connection. 5.3. Constructing affine (para)-Kahler manifolds. 5.4. Affine Kahler curvature operators. 5.5. Affine para-Kahler curvature operators. 5.6. Structure of [symbol] as a GL[symbol] module -- 6. Riemannian geometry. 6.1. The Riemann curvature tensor. 6.2. The Weyl conformal curvature tensor. 6.3. The Cauchy-Kovalevskaya theorem. 6.4. Geometric realizations of Riemann curvature tensors. 6.5. Weyl geometry II -- 7. Complex Riemannian geometry. 7.1. The decomposition of [symbol] as modules over [symbol]. 7.2. The submodules of [symbol] arising from the Ricci tensors. 7.3. Para-hermitian and pseudo-hermitian geometry. 7.4. Almost para-hermitian and almost pseudo-hermitian geometry. 7.5. Kahler geometry in the Riemannian setting III. 7.6. Complex Weyl geometry. 7.7. The covariant derivative of the Kahler form II. | |
520 | |a A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be phrased as problems involving the geometric realization of curvature. Curvature decompositions are central to all investigations in this area. The authors present numerous results including the Singer-Thorpe decomposition, the Bokan decomposition, the Nikcevic decomposition, the Tricerri-Vanhecke decomposition, the Gray-Hervella decomposition and the De Smedt decomposition. They then proceed to draw appropriate geometric conclusions from these decompositions. The book organizes, in one coherent volume, the results of research completed by many different investigators over the past 30 years. Complete proofs are given of results that are often only outlined in the original publications. Whereas the original results are usually in the positive definite (Riemannian setting), here the authors extend the results to the pseudo-Riemannian setting and then further, in a complex framework, to para-Hermitian geometry as well. In addition to that, new results are obtained as well, making this an ideal text for anyone wishing to further their knowledge of the science of curvature. | ||
546 | |a English. | ||
650 | 0 | |a Curvature. |0 http://id.loc.gov/authorities/subjects/sh85034911 | |
650 | 0 | |a Geometry. |0 http://id.loc.gov/authorities/subjects/sh85054133 | |
650 | 6 | |a Courbure. | |
650 | 6 | |a Géométrie. | |
650 | 7 | |a geometry. |2 aat | |
650 | 7 | |a MATHEMATICS |x Calculus. |2 bisacsh | |
650 | 7 | |a MATHEMATICS |x Mathematical Analysis. |2 bisacsh | |
650 | 7 | |a Curvature |2 fast | |
650 | 7 | |a Geometry |2 fast | |
700 | 1 | |a Gilkey, Peter B. | |
700 | 1 | |a Nikcevic, Stana. | |
758 | |i has work: |a Geometric realizations of curvature (Text) |1 https://id.oclc.org/worldcat/entity/E39PCFrMrhRgdkKFJCHX7CXVyd |4 https://id.oclc.org/worldcat/ontology/hasWork | ||
776 | 0 | |z 1848167415 | |
776 | 0 | |z 9781848167414 | |
776 | 0 | |z 9781848167421 | |
830 | 0 | |a Imperial College Press advanced texts in mathematics ; |v v. 6. |0 http://id.loc.gov/authorities/names/no2007087803 | |
856 | 4 | 0 | |l FWS01 |p ZDB-4-EBA |q FWS_PDA_EBA |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457216 |3 Volltext |
938 | |a Askews and Holts Library Services |b ASKH |n AH25564836 | ||
938 | |a Coutts Information Services |b COUT |n 23981085 | ||
938 | |a ebrary |b EBRY |n ebr10563518 | ||
938 | |a EBSCOhost |b EBSC |n 457216 | ||
938 | |a YBP Library Services |b YANK |n 7651167 | ||
994 | |a 92 |b GEBAY | ||
912 | |a ZDB-4-EBA | ||
049 | |a DE-863 |
Datensatz im Suchindex
DE-BY-FWS_katkey | ZDB-4-EBA-ocn797852271 |
---|---|
_version_ | 1816882199243259904 |
adam_text | |
any_adam_object | |
author | Brozos-Vázquez, Miguel |
author2 | Gilkey, Peter B. Nikcevic, Stana |
author2_role | |
author2_variant | p b g pb pbg s n sn |
author_facet | Brozos-Vázquez, Miguel Gilkey, Peter B. Nikcevic, Stana |
author_role | |
author_sort | Brozos-Vázquez, Miguel |
author_variant | m b v mbv |
building | Verbundindex |
bvnumber | localFWS |
callnumber-first | Q - Science |
callnumber-label | QA645 |
callnumber-raw | QA645 .V39 2012eb |
callnumber-search | QA645 .V39 2012eb |
callnumber-sort | QA 3645 V39 42012EB |
callnumber-subject | QA - Mathematics |
collection | ZDB-4-EBA |
contents | 1. Introduction and statement of results. 1.1. Notational conventions. 1.2. Representation theory. 1.3. Affine structures. 1.4. Mixed structures. 1.5. Affine Kahler structures. 1.6. Riemannian structures. 1.7. Weyl geometry I. 1.8. Almost pseudo-hermitian geometry. 1.9. The Gray identity. 1.10. Kahler geometry in the Riemannian setting I. 1.11. Curvature Kahler-Weyl geometry. 1.12. The covariant derivative of the Kahler form I. 1.13. Hyper-hermitian geometry -- 2. Representation theory. 2.1. Modules for a group G. 2.2. Quadratic invariants. 2.3. Weyl's theory of invariants. 2.4. Some orthogonal modules. 2.5. Some unitary modules. 2.6. Compact Lie groups -- 3. Connections, curvature, and differential geometry. 3.1. Affine connections. 3.2. Equiaffine connections. 3.3. The Levi-Civita connection. 3.4. Complex geometry. 3.5. The Gray identity. 3.6. Kahler geometry in the Riemannian setting II -- 4. Real affine geometry. 4.1. Decomposition of [symbol] and [symbol] as orthogonal modules. 4.2. The modules [symbol], S[symbol] and [symbol] in [symbol]. 4.3. The modules W[symbol], W[symbol] and W[symbol] in [symbol]. 4.4. Decomposition of [symbol] as a general linear module. 4.5. Geometric realizability of affine curvature operators. 4.6. Decomposition of [symbol] as an orthogonal module -- 5. Affine Kahler geometry. 5.1. Affine Kahler curvature tensor quadratic invariants. 5.2. The Ricci tensor for a Kahler affine connection. 5.3. Constructing affine (para)-Kahler manifolds. 5.4. Affine Kahler curvature operators. 5.5. Affine para-Kahler curvature operators. 5.6. Structure of [symbol] as a GL[symbol] module -- 6. Riemannian geometry. 6.1. The Riemann curvature tensor. 6.2. The Weyl conformal curvature tensor. 6.3. The Cauchy-Kovalevskaya theorem. 6.4. Geometric realizations of Riemann curvature tensors. 6.5. Weyl geometry II -- 7. Complex Riemannian geometry. 7.1. The decomposition of [symbol] as modules over [symbol]. 7.2. The submodules of [symbol] arising from the Ricci tensors. 7.3. Para-hermitian and pseudo-hermitian geometry. 7.4. Almost para-hermitian and almost pseudo-hermitian geometry. 7.5. Kahler geometry in the Riemannian setting III. 7.6. Complex Weyl geometry. 7.7. The covariant derivative of the Kahler form II. |
ctrlnum | (OCoLC)797852271 |
dewey-full | 515/.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.1 |
dewey-search | 515/.1 |
dewey-sort | 3515 11 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07318cam a2200709Ma 4500</leader><controlfield tag="001">ZDB-4-EBA-ocn797852271</controlfield><controlfield tag="003">OCoLC</controlfield><controlfield tag="005">20241004212047.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr cn|||||||||</controlfield><controlfield tag="008">120608s2012 enka ob 001 0 eng d</controlfield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">E7B</subfield><subfield code="b">eng</subfield><subfield code="e">pn</subfield><subfield code="c">E7B</subfield><subfield code="d">OCLCO</subfield><subfield code="d">N$T</subfield><subfield code="d">YDXCP</subfield><subfield code="d">I9W</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">DEBSZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">CDX</subfield><subfield code="d">DEBBG</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCF</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">LOA</subfield><subfield code="d">COCUF</subfield><subfield code="d">AGLDB</subfield><subfield code="d">MOR</subfield><subfield code="d">OTZ</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">COO</subfield><subfield code="d">U3W</subfield><subfield code="d">STF</subfield><subfield code="d">WRM</subfield><subfield code="d">VTS</subfield><subfield code="d">NRAMU</subfield><subfield code="d">CRU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">INT</subfield><subfield code="d">VT2</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">WYU</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">UKAHL</subfield><subfield code="d">UKCRE</subfield><subfield code="d">VLY</subfield><subfield code="d">AJS</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCQ</subfield><subfield code="d">OCLCO</subfield><subfield code="d">OCLCL</subfield><subfield code="d">SXB</subfield><subfield code="d">OCLCQ</subfield></datafield><datafield tag="019" ind1=" " ind2=" "><subfield code="a">961613745</subfield><subfield code="a">962704583</subfield><subfield code="a">974662452</subfield><subfield code="a">974770543</subfield><subfield code="a">1016435380</subfield><subfield code="a">1018041967</subfield><subfield code="a">1043593298</subfield><subfield code="a">1064134354</subfield><subfield code="a">1065000281</subfield><subfield code="a">1086534322</subfield><subfield code="a">1153469487</subfield><subfield code="a">1162537187</subfield><subfield code="a">1241799600</subfield><subfield code="a">1290038274</subfield><subfield code="a">1300662933</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781848167421</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1848167423</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">1848167415</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781848167414</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1280668997</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781280668999</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9786613645920</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">6613645923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)797852271</subfield><subfield code="z">(OCoLC)961613745</subfield><subfield code="z">(OCoLC)962704583</subfield><subfield code="z">(OCoLC)974662452</subfield><subfield code="z">(OCoLC)974770543</subfield><subfield code="z">(OCoLC)1016435380</subfield><subfield code="z">(OCoLC)1018041967</subfield><subfield code="z">(OCoLC)1043593298</subfield><subfield code="z">(OCoLC)1064134354</subfield><subfield code="z">(OCoLC)1065000281</subfield><subfield code="z">(OCoLC)1086534322</subfield><subfield code="z">(OCoLC)1153469487</subfield><subfield code="z">(OCoLC)1162537187</subfield><subfield code="z">(OCoLC)1241799600</subfield><subfield code="z">(OCoLC)1290038274</subfield><subfield code="z">(OCoLC)1300662933</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA645</subfield><subfield code="b">.V39 2012eb</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">005000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">MAT</subfield><subfield code="x">034000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="082" ind1="7" ind2=" "><subfield code="a">515/.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">MAIN</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brozos-Vázquez, Miguel.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometric realizations of curvature /</subfield><subfield code="c">Miguel Brozos Vázquez, Peter B. Gilkey, Stana Nikcevic.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">London :</subfield><subfield code="b">Imperial College Press,</subfield><subfield code="c">2012.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (ix, 252 pages) :</subfield><subfield code="b">illustrations.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ICP advanced texts in mathematics,</subfield><subfield code="x">1753-657X ;</subfield><subfield code="v">v. 6</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">1. Introduction and statement of results. 1.1. Notational conventions. 1.2. Representation theory. 1.3. Affine structures. 1.4. Mixed structures. 1.5. Affine Kahler structures. 1.6. Riemannian structures. 1.7. Weyl geometry I. 1.8. Almost pseudo-hermitian geometry. 1.9. The Gray identity. 1.10. Kahler geometry in the Riemannian setting I. 1.11. Curvature Kahler-Weyl geometry. 1.12. The covariant derivative of the Kahler form I. 1.13. Hyper-hermitian geometry -- 2. Representation theory. 2.1. Modules for a group G. 2.2. Quadratic invariants. 2.3. Weyl's theory of invariants. 2.4. Some orthogonal modules. 2.5. Some unitary modules. 2.6. Compact Lie groups -- 3. Connections, curvature, and differential geometry. 3.1. Affine connections. 3.2. Equiaffine connections. 3.3. The Levi-Civita connection. 3.4. Complex geometry. 3.5. The Gray identity. 3.6. Kahler geometry in the Riemannian setting II -- 4. Real affine geometry. 4.1. Decomposition of [symbol] and [symbol] as orthogonal modules. 4.2. The modules [symbol], S[symbol] and [symbol] in [symbol]. 4.3. The modules W[symbol], W[symbol] and W[symbol] in [symbol]. 4.4. Decomposition of [symbol] as a general linear module. 4.5. Geometric realizability of affine curvature operators. 4.6. Decomposition of [symbol] as an orthogonal module -- 5. Affine Kahler geometry. 5.1. Affine Kahler curvature tensor quadratic invariants. 5.2. The Ricci tensor for a Kahler affine connection. 5.3. Constructing affine (para)-Kahler manifolds. 5.4. Affine Kahler curvature operators. 5.5. Affine para-Kahler curvature operators. 5.6. Structure of [symbol] as a GL[symbol] module -- 6. Riemannian geometry. 6.1. The Riemann curvature tensor. 6.2. The Weyl conformal curvature tensor. 6.3. The Cauchy-Kovalevskaya theorem. 6.4. Geometric realizations of Riemann curvature tensors. 6.5. Weyl geometry II -- 7. Complex Riemannian geometry. 7.1. The decomposition of [symbol] as modules over [symbol]. 7.2. The submodules of [symbol] arising from the Ricci tensors. 7.3. Para-hermitian and pseudo-hermitian geometry. 7.4. Almost para-hermitian and almost pseudo-hermitian geometry. 7.5. Kahler geometry in the Riemannian setting III. 7.6. Complex Weyl geometry. 7.7. The covariant derivative of the Kahler form II.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be phrased as problems involving the geometric realization of curvature. Curvature decompositions are central to all investigations in this area. The authors present numerous results including the Singer-Thorpe decomposition, the Bokan decomposition, the Nikcevic decomposition, the Tricerri-Vanhecke decomposition, the Gray-Hervella decomposition and the De Smedt decomposition. They then proceed to draw appropriate geometric conclusions from these decompositions. The book organizes, in one coherent volume, the results of research completed by many different investigators over the past 30 years. Complete proofs are given of results that are often only outlined in the original publications. Whereas the original results are usually in the positive definite (Riemannian setting), here the authors extend the results to the pseudo-Riemannian setting and then further, in a complex framework, to para-Hermitian geometry as well. In addition to that, new results are obtained as well, making this an ideal text for anyone wishing to further their knowledge of the science of curvature.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Curvature.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85034911</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geometry.</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85054133</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Courbure.</subfield></datafield><datafield tag="650" ind1=" " ind2="6"><subfield code="a">Géométrie.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">geometry.</subfield><subfield code="2">aat</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Calculus.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS</subfield><subfield code="x">Mathematical Analysis.</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Curvature</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry</subfield><subfield code="2">fast</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gilkey, Peter B.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nikcevic, Stana.</subfield></datafield><datafield tag="758" ind1=" " ind2=" "><subfield code="i">has work:</subfield><subfield code="a">Geometric realizations of curvature (Text)</subfield><subfield code="1">https://id.oclc.org/worldcat/entity/E39PCFrMrhRgdkKFJCHX7CXVyd</subfield><subfield code="4">https://id.oclc.org/worldcat/ontology/hasWork</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">1848167415</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9781848167414</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9781848167421</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Imperial College Press advanced texts in mathematics ;</subfield><subfield code="v">v. 6.</subfield><subfield code="0">http://id.loc.gov/authorities/names/no2007087803</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="l">FWS01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FWS_PDA_EBA</subfield><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457216</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Askews and Holts Library Services</subfield><subfield code="b">ASKH</subfield><subfield code="n">AH25564836</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">Coutts Information Services</subfield><subfield code="b">COUT</subfield><subfield code="n">23981085</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">ebrary</subfield><subfield code="b">EBRY</subfield><subfield code="n">ebr10563518</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">EBSCOhost</subfield><subfield code="b">EBSC</subfield><subfield code="n">457216</subfield></datafield><datafield tag="938" ind1=" " ind2=" "><subfield code="a">YBP Library Services</subfield><subfield code="b">YANK</subfield><subfield code="n">7651167</subfield></datafield><datafield tag="994" ind1=" " ind2=" "><subfield code="a">92</subfield><subfield code="b">GEBAY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-863</subfield></datafield></record></collection> |
id | ZDB-4-EBA-ocn797852271 |
illustrated | Illustrated |
indexdate | 2024-11-27T13:24:48Z |
institution | BVB |
isbn | 9781848167421 1848167423 1280668997 9781280668999 9786613645920 6613645923 |
issn | 1753-657X ; |
language | English |
oclc_num | 797852271 |
open_access_boolean | |
owner | MAIN DE-863 DE-BY-FWS |
owner_facet | MAIN DE-863 DE-BY-FWS |
physical | 1 online resource (ix, 252 pages) : illustrations. |
psigel | ZDB-4-EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Imperial College Press, |
record_format | marc |
series | Imperial College Press advanced texts in mathematics ; |
series2 | ICP advanced texts in mathematics, |
spelling | Brozos-Vázquez, Miguel. Geometric realizations of curvature / Miguel Brozos Vázquez, Peter B. Gilkey, Stana Nikcevic. London : Imperial College Press, 2012. 1 online resource (ix, 252 pages) : illustrations. text txt rdacontent computer c rdamedia online resource cr rdacarrier ICP advanced texts in mathematics, 1753-657X ; v. 6 Includes bibliographical references and index. 1. Introduction and statement of results. 1.1. Notational conventions. 1.2. Representation theory. 1.3. Affine structures. 1.4. Mixed structures. 1.5. Affine Kahler structures. 1.6. Riemannian structures. 1.7. Weyl geometry I. 1.8. Almost pseudo-hermitian geometry. 1.9. The Gray identity. 1.10. Kahler geometry in the Riemannian setting I. 1.11. Curvature Kahler-Weyl geometry. 1.12. The covariant derivative of the Kahler form I. 1.13. Hyper-hermitian geometry -- 2. Representation theory. 2.1. Modules for a group G. 2.2. Quadratic invariants. 2.3. Weyl's theory of invariants. 2.4. Some orthogonal modules. 2.5. Some unitary modules. 2.6. Compact Lie groups -- 3. Connections, curvature, and differential geometry. 3.1. Affine connections. 3.2. Equiaffine connections. 3.3. The Levi-Civita connection. 3.4. Complex geometry. 3.5. The Gray identity. 3.6. Kahler geometry in the Riemannian setting II -- 4. Real affine geometry. 4.1. Decomposition of [symbol] and [symbol] as orthogonal modules. 4.2. The modules [symbol], S[symbol] and [symbol] in [symbol]. 4.3. The modules W[symbol], W[symbol] and W[symbol] in [symbol]. 4.4. Decomposition of [symbol] as a general linear module. 4.5. Geometric realizability of affine curvature operators. 4.6. Decomposition of [symbol] as an orthogonal module -- 5. Affine Kahler geometry. 5.1. Affine Kahler curvature tensor quadratic invariants. 5.2. The Ricci tensor for a Kahler affine connection. 5.3. Constructing affine (para)-Kahler manifolds. 5.4. Affine Kahler curvature operators. 5.5. Affine para-Kahler curvature operators. 5.6. Structure of [symbol] as a GL[symbol] module -- 6. Riemannian geometry. 6.1. The Riemann curvature tensor. 6.2. The Weyl conformal curvature tensor. 6.3. The Cauchy-Kovalevskaya theorem. 6.4. Geometric realizations of Riemann curvature tensors. 6.5. Weyl geometry II -- 7. Complex Riemannian geometry. 7.1. The decomposition of [symbol] as modules over [symbol]. 7.2. The submodules of [symbol] arising from the Ricci tensors. 7.3. Para-hermitian and pseudo-hermitian geometry. 7.4. Almost para-hermitian and almost pseudo-hermitian geometry. 7.5. Kahler geometry in the Riemannian setting III. 7.6. Complex Weyl geometry. 7.7. The covariant derivative of the Kahler form II. A central area of study in Differential Geometry is the examination of the relationship between the purely algebraic properties of the Riemann curvature tensor and the underlying geometric properties of the manifold. In this book, the findings of numerous investigations in this field of study are reviewed and presented in a clear, coherent form, including the latest developments and proofs. Even though many authors have worked in this area in recent years, many fundamental questions still remain unanswered. Many studies begin by first working purely algebraically and then later progressing onto the geometric setting and it has been found that many questions in differential geometry can be phrased as problems involving the geometric realization of curvature. Curvature decompositions are central to all investigations in this area. The authors present numerous results including the Singer-Thorpe decomposition, the Bokan decomposition, the Nikcevic decomposition, the Tricerri-Vanhecke decomposition, the Gray-Hervella decomposition and the De Smedt decomposition. They then proceed to draw appropriate geometric conclusions from these decompositions. The book organizes, in one coherent volume, the results of research completed by many different investigators over the past 30 years. Complete proofs are given of results that are often only outlined in the original publications. Whereas the original results are usually in the positive definite (Riemannian setting), here the authors extend the results to the pseudo-Riemannian setting and then further, in a complex framework, to para-Hermitian geometry as well. In addition to that, new results are obtained as well, making this an ideal text for anyone wishing to further their knowledge of the science of curvature. English. Curvature. http://id.loc.gov/authorities/subjects/sh85034911 Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Courbure. Géométrie. geometry. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Curvature fast Geometry fast Gilkey, Peter B. Nikcevic, Stana. has work: Geometric realizations of curvature (Text) https://id.oclc.org/worldcat/entity/E39PCFrMrhRgdkKFJCHX7CXVyd https://id.oclc.org/worldcat/ontology/hasWork 1848167415 9781848167414 9781848167421 Imperial College Press advanced texts in mathematics ; v. 6. http://id.loc.gov/authorities/names/no2007087803 FWS01 ZDB-4-EBA FWS_PDA_EBA https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457216 Volltext |
spellingShingle | Brozos-Vázquez, Miguel Geometric realizations of curvature / Imperial College Press advanced texts in mathematics ; 1. Introduction and statement of results. 1.1. Notational conventions. 1.2. Representation theory. 1.3. Affine structures. 1.4. Mixed structures. 1.5. Affine Kahler structures. 1.6. Riemannian structures. 1.7. Weyl geometry I. 1.8. Almost pseudo-hermitian geometry. 1.9. The Gray identity. 1.10. Kahler geometry in the Riemannian setting I. 1.11. Curvature Kahler-Weyl geometry. 1.12. The covariant derivative of the Kahler form I. 1.13. Hyper-hermitian geometry -- 2. Representation theory. 2.1. Modules for a group G. 2.2. Quadratic invariants. 2.3. Weyl's theory of invariants. 2.4. Some orthogonal modules. 2.5. Some unitary modules. 2.6. Compact Lie groups -- 3. Connections, curvature, and differential geometry. 3.1. Affine connections. 3.2. Equiaffine connections. 3.3. The Levi-Civita connection. 3.4. Complex geometry. 3.5. The Gray identity. 3.6. Kahler geometry in the Riemannian setting II -- 4. Real affine geometry. 4.1. Decomposition of [symbol] and [symbol] as orthogonal modules. 4.2. The modules [symbol], S[symbol] and [symbol] in [symbol]. 4.3. The modules W[symbol], W[symbol] and W[symbol] in [symbol]. 4.4. Decomposition of [symbol] as a general linear module. 4.5. Geometric realizability of affine curvature operators. 4.6. Decomposition of [symbol] as an orthogonal module -- 5. Affine Kahler geometry. 5.1. Affine Kahler curvature tensor quadratic invariants. 5.2. The Ricci tensor for a Kahler affine connection. 5.3. Constructing affine (para)-Kahler manifolds. 5.4. Affine Kahler curvature operators. 5.5. Affine para-Kahler curvature operators. 5.6. Structure of [symbol] as a GL[symbol] module -- 6. Riemannian geometry. 6.1. The Riemann curvature tensor. 6.2. The Weyl conformal curvature tensor. 6.3. The Cauchy-Kovalevskaya theorem. 6.4. Geometric realizations of Riemann curvature tensors. 6.5. Weyl geometry II -- 7. Complex Riemannian geometry. 7.1. The decomposition of [symbol] as modules over [symbol]. 7.2. The submodules of [symbol] arising from the Ricci tensors. 7.3. Para-hermitian and pseudo-hermitian geometry. 7.4. Almost para-hermitian and almost pseudo-hermitian geometry. 7.5. Kahler geometry in the Riemannian setting III. 7.6. Complex Weyl geometry. 7.7. The covariant derivative of the Kahler form II. Curvature. http://id.loc.gov/authorities/subjects/sh85034911 Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Courbure. Géométrie. geometry. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Curvature fast Geometry fast |
subject_GND | http://id.loc.gov/authorities/subjects/sh85034911 http://id.loc.gov/authorities/subjects/sh85054133 |
title | Geometric realizations of curvature / |
title_auth | Geometric realizations of curvature / |
title_exact_search | Geometric realizations of curvature / |
title_full | Geometric realizations of curvature / Miguel Brozos Vázquez, Peter B. Gilkey, Stana Nikcevic. |
title_fullStr | Geometric realizations of curvature / Miguel Brozos Vázquez, Peter B. Gilkey, Stana Nikcevic. |
title_full_unstemmed | Geometric realizations of curvature / Miguel Brozos Vázquez, Peter B. Gilkey, Stana Nikcevic. |
title_short | Geometric realizations of curvature / |
title_sort | geometric realizations of curvature |
topic | Curvature. http://id.loc.gov/authorities/subjects/sh85034911 Geometry. http://id.loc.gov/authorities/subjects/sh85054133 Courbure. Géométrie. geometry. aat MATHEMATICS Calculus. bisacsh MATHEMATICS Mathematical Analysis. bisacsh Curvature fast Geometry fast |
topic_facet | Curvature. Geometry. Courbure. Géométrie. geometry. MATHEMATICS Calculus. MATHEMATICS Mathematical Analysis. Curvature Geometry |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=457216 |
work_keys_str_mv | AT brozosvazquezmiguel geometricrealizationsofcurvature AT gilkeypeterb geometricrealizationsofcurvature AT nikcevicstana geometricrealizationsofcurvature |